A coefficient comparison of weighted similarity extreme learning machine for drug screening

Wasu Kudisthalert, Kitsuchart Pasupa
{"title":"A coefficient comparison of weighted similarity extreme learning machine for drug screening","authors":"Wasu Kudisthalert, Kitsuchart Pasupa","doi":"10.1109/KST.2016.7440525","DOIUrl":null,"url":null,"abstract":"Machine learning techniques are becoming popular in drug discovery process. It can be used to predict the biological activities of compounds. This paper focuses on virtual screening task. We proposed the Weighted Similarity Extreme Learning Machine algorithm (WELM). It is based on Single Layer Feedforward Neural Network. The algorithm is powerful, iteratively free, and easy to program. In this work, we compared the performance of 17 different types of coefficients with WELM on a well-known dataset in the area of virtual screening named Maximum Unbiased Validation dataset. Moreover, the WELM with different types of coefficients were also compared with the conventional technique-similarity searching. WELM together with Jaccard/Tanimoto were able to achieve the best results on average in most of the activity classes.","PeriodicalId":350687,"journal":{"name":"2016 8th International Conference on Knowledge and Smart Technology (KST)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th International Conference on Knowledge and Smart Technology (KST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KST.2016.7440525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Machine learning techniques are becoming popular in drug discovery process. It can be used to predict the biological activities of compounds. This paper focuses on virtual screening task. We proposed the Weighted Similarity Extreme Learning Machine algorithm (WELM). It is based on Single Layer Feedforward Neural Network. The algorithm is powerful, iteratively free, and easy to program. In this work, we compared the performance of 17 different types of coefficients with WELM on a well-known dataset in the area of virtual screening named Maximum Unbiased Validation dataset. Moreover, the WELM with different types of coefficients were also compared with the conventional technique-similarity searching. WELM together with Jaccard/Tanimoto were able to achieve the best results on average in most of the activity classes.
加权相似极值学习机在药物筛选中的系数比较
机器学习技术在药物发现过程中越来越受欢迎。它可以用来预测化合物的生物活性。本文主要研究虚拟筛选任务。我们提出了加权相似度极限学习机算法(WELM)。它基于单层前馈神经网络。该算法功能强大,无需迭代,且易于编程。在这项工作中,我们比较了17种不同类型的系数与WELM在虚拟筛选领域的一个知名数据集上的性能,该数据集被称为最大无偏验证数据集。此外,还将不同系数类型的WELM与传统的相似度搜索技术进行了比较。WELM与Jaccard/Tanimoto在大多数活动课上的平均成绩最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信