Neural Network-based Classification for Engine Load

Syed Maaz Shahid, BaekDu Jo, Sunghoon Ko, Sungoh Kwon
{"title":"Neural Network-based Classification for Engine Load","authors":"Syed Maaz Shahid, BaekDu Jo, Sunghoon Ko, Sungoh Kwon","doi":"10.1109/ICAIIC.2019.8669078","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an engine load classification algorithm using torque data in the crank-angle domain. Engine cylinder operation is different at different engine loads. Engine load information helps to predict the chances or understanding the behavior of a malfunction in engine operation. Hence, we developed an engine load classifier based on signal processing and using an artificial neural network. To that end, we use a magnetic pickup sensor to extract a four-stroke V-type diesel engine's operational information. The pickup sensor's signals are converted to the crank-angle domain (CAD) signal and CAD signals are used in conjunction with the proposed classifier to classify the engine load. For verification, we considered two engine loads (100% and 75%) for a V-type 12-cylinder diesel engine. The proposed algorithm classifies these engine loads with 100% efficiency.","PeriodicalId":273383,"journal":{"name":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIIC.2019.8669078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose an engine load classification algorithm using torque data in the crank-angle domain. Engine cylinder operation is different at different engine loads. Engine load information helps to predict the chances or understanding the behavior of a malfunction in engine operation. Hence, we developed an engine load classifier based on signal processing and using an artificial neural network. To that end, we use a magnetic pickup sensor to extract a four-stroke V-type diesel engine's operational information. The pickup sensor's signals are converted to the crank-angle domain (CAD) signal and CAD signals are used in conjunction with the proposed classifier to classify the engine load. For verification, we considered two engine loads (100% and 75%) for a V-type 12-cylinder diesel engine. The proposed algorithm classifies these engine loads with 100% efficiency.
基于神经网络的发动机负荷分类
本文提出了一种基于曲柄角域转矩数据的发动机负荷分类算法。在不同的发动机负荷下,发动机气缸的工作是不同的。发动机负载信息有助于预测发动机运行中发生故障的可能性或了解故障行为。因此,我们开发了一种基于信号处理和人工神经网络的发动机负荷分类器。为此,我们使用磁性拾取传感器提取四冲程v型柴油机的运行信息。将拾取传感器的信号转换为曲柄角域(CAD)信号,并将CAD信号与所提出的分类器结合使用,对发动机负载进行分类。为了验证,我们考虑了v型12缸柴油发动机的两种发动机负载(100%和75%)。该算法以100%的效率对这些发动机负载进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信