The development of CAD system for hemorrhagic stroke in computed tomography images

Jing-Guo Gan, Yu-Wei Wang, J. Su, L. Chan
{"title":"The development of CAD system for hemorrhagic stroke in computed tomography images","authors":"Jing-Guo Gan, Yu-Wei Wang, J. Su, L. Chan","doi":"10.1109/ISBB.2014.6820936","DOIUrl":null,"url":null,"abstract":"The purpose of this study is to develop a hemorrhagic stroke computer-aided detection system to quantify three values in computed tomography, including values of brain midline shift (BMS), bleeding volume (BV) and edema volume (EV), which are basic index for physicians to observe. The median filter and region growing were used to remove the noise and skull stripping in single slice and then the brain tissue's shift axis was detect based on the location of the ventricle and pineal gland. The bleeding region and edema region were segmented by checking the symmetrical of left and right brain. Finally, after calculate the volume through each slice these three index (BMS, BV, and EV) can be obtained. Phantoms and clinical CT images which including 240 slices images from 8 cases, were used to verify this system. The error of midline shift was less than 5% and the volume difference is less than 3.47% for phantom images in average. After comparing the area of bleeding region (ABR) and edema region (AER) with this system calculated and doctor selected in those CT, the results showed that the average difference of ABR is 8.8±3.13%, the average of degree of coincidence is 86.4±5.43%, and the average difference of AER is 14.1±4.48%, the average of degree of coincidence is 77.4±6.58%. Thus, the proposed method can clearly benefit not only visual diagnostics, but also quantitative methodologies about hemorrhagic stroke-related parameters.","PeriodicalId":265886,"journal":{"name":"2014 IEEE International Symposium on Bioelectronics and Bioinformatics (IEEE ISBB 2014)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Bioelectronics and Bioinformatics (IEEE ISBB 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBB.2014.6820936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The purpose of this study is to develop a hemorrhagic stroke computer-aided detection system to quantify three values in computed tomography, including values of brain midline shift (BMS), bleeding volume (BV) and edema volume (EV), which are basic index for physicians to observe. The median filter and region growing were used to remove the noise and skull stripping in single slice and then the brain tissue's shift axis was detect based on the location of the ventricle and pineal gland. The bleeding region and edema region were segmented by checking the symmetrical of left and right brain. Finally, after calculate the volume through each slice these three index (BMS, BV, and EV) can be obtained. Phantoms and clinical CT images which including 240 slices images from 8 cases, were used to verify this system. The error of midline shift was less than 5% and the volume difference is less than 3.47% for phantom images in average. After comparing the area of bleeding region (ABR) and edema region (AER) with this system calculated and doctor selected in those CT, the results showed that the average difference of ABR is 8.8±3.13%, the average of degree of coincidence is 86.4±5.43%, and the average difference of AER is 14.1±4.48%, the average of degree of coincidence is 77.4±6.58%. Thus, the proposed method can clearly benefit not only visual diagnostics, but also quantitative methodologies about hemorrhagic stroke-related parameters.
出血性中风计算机断层图像CAD系统的开发
本研究的目的是开发出血性脑卒中计算机辅助检测系统,量化计算机断层扫描中的三个值,包括脑中线移位(BMS)、出血量(BV)和水肿量(EV),这是医生观察的基本指标。采用中值滤波和区域生长方法去除单片噪声和颅骨剥离,然后根据脑室和松果体的位置检测脑组织的移位轴。通过检查左、右脑对称性,对出血区和水肿区进行分割。最后,通过计算每个切片的体积,得到三个指标(BMS、BV和EV)。采用8例患者的240张CT切片图像和幻影图像对该系统进行验证。幻影图像的中线偏移误差平均小于5%,体积差平均小于3.47%。将该系统计算并选择的CT中出血区(ABR)和水肿区(AER)面积进行比较,结果显示ABR的平均差值为8.8±3.13%,平均符合度为86.4±5.43%,AER的平均差值为14.1±4.48%,平均符合度为77.4±6.58%。因此,所提出的方法不仅有利于视觉诊断,而且有利于出血性卒中相关参数的定量方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信