Biomarkers

D. Sandsmark, Monisha Kumar, R. Diaz-Arrastia
{"title":"Biomarkers","authors":"D. Sandsmark, Monisha Kumar, R. Diaz-Arrastia","doi":"10.1176/appi.books.9781615372645.js09","DOIUrl":null,"url":null,"abstract":"Background: Tau protein abnormalities have been attracting more and more atten-tion in Alzheimer’s disease (AD) pathophysiology. Tau spreads in a hierarchical pattern in the AD brain, likely by trans-synaptic propagation between neurons. Discovering geneticriskfactorsassociatedwithtaupathologycouldbekeyforimprovingourability to predict and treat AD. In this study, we leveraged the non-linear analytic approach of deep learning to identify genes that are associated with cerebrospinal fluid (CSF) total tau levels. Method: We selected 384 subjects [118 normal control and 266 mild cognitive impair-ment (MCI)] from ADNI cohort. We designed a deep neuron network model that predicted CSF total tau levels using peripheral blood transcriptomic data. More specif-ically, we developed an occlusion map approach to rank 2,364 transcripts, which were initially selected from 49,386 transcripts by dimension reduction. The occlusion map aimed to rank the transcripts and identified the critical ones. Result: Our deep neural network successfully predicted CSF total tau levels with an accuracy of 67% and the occlusion map identified the critical genes for the prediction. The list included genes like TTL5, AKIRIN2, CPEB1, PTPN7, CIRBP and RPS23, which have been previously reported to be related to AD. For example, TTL5 relates to mis-sorting of tau protein. AKIRIN2 is essential for the formation of the cerebral cortex. CPEB is found to be an interacting factor of amyloid-precursor protein (APP). PTPN7 belongs to protein tyrosine phosphatases family, among which","PeriodicalId":132280,"journal":{"name":"Textbook of Traumatic Brain Injury","volume":"590 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Textbook of Traumatic Brain Injury","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1176/appi.books.9781615372645.js09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Tau protein abnormalities have been attracting more and more atten-tion in Alzheimer’s disease (AD) pathophysiology. Tau spreads in a hierarchical pattern in the AD brain, likely by trans-synaptic propagation between neurons. Discovering geneticriskfactorsassociatedwithtaupathologycouldbekeyforimprovingourability to predict and treat AD. In this study, we leveraged the non-linear analytic approach of deep learning to identify genes that are associated with cerebrospinal fluid (CSF) total tau levels. Method: We selected 384 subjects [118 normal control and 266 mild cognitive impair-ment (MCI)] from ADNI cohort. We designed a deep neuron network model that predicted CSF total tau levels using peripheral blood transcriptomic data. More specif-ically, we developed an occlusion map approach to rank 2,364 transcripts, which were initially selected from 49,386 transcripts by dimension reduction. The occlusion map aimed to rank the transcripts and identified the critical ones. Result: Our deep neural network successfully predicted CSF total tau levels with an accuracy of 67% and the occlusion map identified the critical genes for the prediction. The list included genes like TTL5, AKIRIN2, CPEB1, PTPN7, CIRBP and RPS23, which have been previously reported to be related to AD. For example, TTL5 relates to mis-sorting of tau protein. AKIRIN2 is essential for the formation of the cerebral cortex. CPEB is found to be an interacting factor of amyloid-precursor protein (APP). PTPN7 belongs to protein tyrosine phosphatases family, among which
生物标记物
背景:Tau蛋白异常在阿尔茨海默病(AD)病理生理中越来越受到关注。Tau蛋白在阿尔茨海默氏症大脑中以分层模式传播,可能是通过神经元之间的跨突触传播。发现与肿瘤病理相关的遗传风险因素可能是提高我们预测和治疗阿尔茨海默病能力的关键。在这项研究中,我们利用深度学习的非线性分析方法来识别与脑脊液(CSF)总tau水平相关的基因。方法:从ADNI队列中选取384例,其中正常人118例,轻度认知障碍(MCI) 266例。我们设计了一个深度神经元网络模型,利用外周血转录组学数据预测脑脊液总tau水平。更具体地说,我们开发了一种闭塞图方法来对2,364个转录本进行排序,这些转录本最初是通过降维从49,386个转录本中选择的。遮挡图旨在对转录本进行排序并识别出关键的转录本。结果:我们的深度神经网络成功预测脑脊液总tau水平,准确率为67%,闭塞图确定了预测的关键基因。该列表包括TTL5、AKIRIN2、CPEB1、PTPN7、CIRBP和RPS23等基因,这些基因之前被报道与AD相关。例如,TTL5与tau蛋白的错误分类有关。AKIRIN2对于大脑皮层的形成至关重要。发现CPEB是淀粉样前体蛋白(APP)的相互作用因子。PTPN7属于蛋白酪氨酸磷酸酶家族,其中
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信