MESHFREEFLOWNET: A Physics-Constrained Deep Continuous Space-Time Super-Resolution Framework

C. Jiang, S. Esmaeilzadeh, K. Azizzadenesheli, K. Kashinath, Mustafa A. Mustafa, H. Tchelepi, P. Marcus, Prabhat, Anima Anandkumar
{"title":"MESHFREEFLOWNET: A Physics-Constrained Deep Continuous Space-Time Super-Resolution Framework","authors":"C. Jiang, S. Esmaeilzadeh, K. Azizzadenesheli, K. Kashinath, Mustafa A. Mustafa, H. Tchelepi, P. Marcus, Prabhat, Anima Anandkumar","doi":"10.1109/SC41405.2020.00013","DOIUrl":null,"url":null,"abstract":"We propose MESHFREEFLOWNET, a novel deep learning-based super-resolution framework to generate continuous (grid-free) spatio-temporal solutions from the lowresolution inputs. While being computationally efficient, MESHFREEFLOWNET accurately recovers the fine-scale quantities of interest. MESHFREEFLOWNET allows for: (i) the output to be sampled at all spatio-temporal resolutions, (ii) a set of Partial Differential Equation (PDE) constraints to be imposed, and (iii) training on fixed-size inputs on arbitrarily sized spatio-temporal domains owing to its fully convolutional encoder. We empirically study the performance of MESHFREEFLOWNET on the task of super-resolution of turbulent flows in the Rayleigh-Bénard convection problem. Across a diverse set of evaluation metrics, we show that MESHFREEFLOWNET significantly outperforms existing baselines. Furthermore, we provide a large scale implementation of MESHFREEFLOWNET and show that it efficiently scales across large clusters, achieving 96.80% scaling efficiency on up to 128 GPUs and a training time of less than 4 minutes. We provide an opensource implementation of our method that supports arbitrary combinations of PDE constraints1lsource code available:","PeriodicalId":424429,"journal":{"name":"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"96","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC41405.2020.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 96

Abstract

We propose MESHFREEFLOWNET, a novel deep learning-based super-resolution framework to generate continuous (grid-free) spatio-temporal solutions from the lowresolution inputs. While being computationally efficient, MESHFREEFLOWNET accurately recovers the fine-scale quantities of interest. MESHFREEFLOWNET allows for: (i) the output to be sampled at all spatio-temporal resolutions, (ii) a set of Partial Differential Equation (PDE) constraints to be imposed, and (iii) training on fixed-size inputs on arbitrarily sized spatio-temporal domains owing to its fully convolutional encoder. We empirically study the performance of MESHFREEFLOWNET on the task of super-resolution of turbulent flows in the Rayleigh-Bénard convection problem. Across a diverse set of evaluation metrics, we show that MESHFREEFLOWNET significantly outperforms existing baselines. Furthermore, we provide a large scale implementation of MESHFREEFLOWNET and show that it efficiently scales across large clusters, achieving 96.80% scaling efficiency on up to 128 GPUs and a training time of less than 4 minutes. We provide an opensource implementation of our method that supports arbitrary combinations of PDE constraints1lsource code available:
一个物理约束的深度连续时空超分辨率框架
我们提出MESHFREEFLOWNET,这是一个基于深度学习的超分辨率框架,用于从低分辨率输入生成连续(无网格)时空解。在计算效率高的同时,MESHFREEFLOWNET可以准确地恢复感兴趣的精细尺度数量。MESHFREEFLOWNET允许:(i)在所有时空分辨率下对输出进行采样,(ii)施加一组偏微分方程(PDE)约束,以及(iii)由于其全卷积编码器,在任意大小的时空域中对固定大小的输入进行训练。在rayleigh - b对流问题中,我们对MESHFREEFLOWNET在湍流超分辨任务上的性能进行了实证研究。通过一系列不同的评估指标,我们发现MESHFREEFLOWNET显著优于现有的基线。此外,我们提供了MESHFREEFLOWNET的大规模实现,并表明它可以有效地跨大型集群扩展,在多达128个gpu上实现96.80%的扩展效率,训练时间不到4分钟。我们提供了我们的方法的一个开源实现,它支持PDE约束的任意组合(源代码可用):
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信