Evaluating the utility of statistical phrases and latent semantic indexing for text classification

H. Wu, D. Gunopulos
{"title":"Evaluating the utility of statistical phrases and latent semantic indexing for text classification","authors":"H. Wu, D. Gunopulos","doi":"10.1109/ICDM.2002.1184036","DOIUrl":null,"url":null,"abstract":"The term-based vector space model is a prominent technique for retrieving textual information. In this paper we examine the usefulness of phrases as terms in vector-based document classification. We focus on statistical techniques to extract both adjacent and window phrases from documents. We discover that the positive effect of adding phrase terms is very limited, if we have already achieved good performance using single-word terms, even when SVD/LSI is used as the dimensionality reduction method.","PeriodicalId":405340,"journal":{"name":"2002 IEEE International Conference on Data Mining, 2002. Proceedings.","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 IEEE International Conference on Data Mining, 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2002.1184036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

The term-based vector space model is a prominent technique for retrieving textual information. In this paper we examine the usefulness of phrases as terms in vector-based document classification. We focus on statistical techniques to extract both adjacent and window phrases from documents. We discover that the positive effect of adding phrase terms is very limited, if we have already achieved good performance using single-word terms, even when SVD/LSI is used as the dimensionality reduction method.
评估统计短语和潜在语义索引在文本分类中的效用
基于术语的向量空间模型是检索文本信息的重要技术。在本文中,我们研究了短语作为术语在基于向量的文档分类中的有用性。我们专注于从文档中提取相邻短语和窗口短语的统计技术。我们发现,即使使用SVD/LSI作为降维方法,如果我们已经使用单字术语取得了良好的性能,那么添加短语术语的积极效果是非常有限的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信