Illustrative Design Space Studies with Microarchitectural Regression Models

Benjamin C. Lee, D. Brooks
{"title":"Illustrative Design Space Studies with Microarchitectural Regression Models","authors":"Benjamin C. Lee, D. Brooks","doi":"10.1109/HPCA.2007.346211","DOIUrl":null,"url":null,"abstract":"We apply a scalable approach for practical, comprehensive design space evaluation and optimization. This approach combines design space sampling and statistical inference to identify trends from a sparse simulation of the space. The computational efficiency of sampling and inference enables new capabilities in design space exploration. We illustrate these capabilities using performance and power models for three studies of a 260,000 point design space: (1) Pareto frontier analysis, (2) pipeline depth analysis, and (3) multiprocessor heterogeneity analysis. For each study, we provide an assessment of predictive error and sensitivity of observed trends to such error. We construct Pareto frontiers and find predictions for Pareto optima are no less accurate than those for the broader design space. We reproduce and enhance prior pipeline depth studies, demonstrating constrained sensitivity studies may not generalize when many other design parameters are held at constant values. Lastly, we identify efficient heterogeneous core designs by clustering per benchmark optimal architectures. Collectively, these studies motivate the application of techniques in statistical inference for more effective use of modern simulator infrastructure","PeriodicalId":177324,"journal":{"name":"2007 IEEE 13th International Symposium on High Performance Computer Architecture","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"138","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 13th International Symposium on High Performance Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2007.346211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 138

Abstract

We apply a scalable approach for practical, comprehensive design space evaluation and optimization. This approach combines design space sampling and statistical inference to identify trends from a sparse simulation of the space. The computational efficiency of sampling and inference enables new capabilities in design space exploration. We illustrate these capabilities using performance and power models for three studies of a 260,000 point design space: (1) Pareto frontier analysis, (2) pipeline depth analysis, and (3) multiprocessor heterogeneity analysis. For each study, we provide an assessment of predictive error and sensitivity of observed trends to such error. We construct Pareto frontiers and find predictions for Pareto optima are no less accurate than those for the broader design space. We reproduce and enhance prior pipeline depth studies, demonstrating constrained sensitivity studies may not generalize when many other design parameters are held at constant values. Lastly, we identify efficient heterogeneous core designs by clustering per benchmark optimal architectures. Collectively, these studies motivate the application of techniques in statistical inference for more effective use of modern simulator infrastructure
用微建筑回归模型研究说明性设计空间
我们采用可扩展的方法进行实用、全面的设计空间评估和优化。这种方法结合了设计空间采样和统计推断,从空间的稀疏模拟中识别趋势。采样和推理的计算效率为设计空间探索提供了新的能力。我们使用性能和功率模型对26万个点的设计空间进行了三项研究:(1)帕累托边界分析,(2)管道深度分析,(3)多处理器异质性分析。对于每一项研究,我们提供了预测误差的评估和观察趋势对这种误差的敏感性。我们构建了帕累托边界,并发现对帕累托最优的预测并不比对更广泛的设计空间的预测更准确。我们重现并加强了之前的管道深度研究,证明当许多其他设计参数保持恒定值时,约束灵敏度研究可能无法推广。最后,我们通过对每个基准最优架构进行聚类来识别高效的异构核心设计。总的来说,这些研究激发了统计推断技术的应用,以更有效地利用现代模拟器基础设施
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信