A comparative analysis of front-end and back-end compatible silicon photonic on-chip interconnects

Ishan G. Thakkar, S. V. R. Chittamuru, S. Pasricha
{"title":"A comparative analysis of front-end and back-end compatible silicon photonic on-chip interconnects","authors":"Ishan G. Thakkar, S. V. R. Chittamuru, S. Pasricha","doi":"10.1145/2947357.2947362","DOIUrl":null,"url":null,"abstract":"Photonic devices fabricated with back-end compatible silicon pho-tonic (BCSP) materials can provide independence from the complex CMOS front-end compatible silicon photonic (FCSP) process, to sig-nificantly enhance photonic network-on-chip (PNoC) architecture performance. In this paper, we present a detailed comparative analy-sis of a number of design tradeoffs for CMOS front-end and back-end compatible devices for silicon photonic interconnects. A cross-layer optimization of multiple device-level and link-level design pa-rameters is performed to enable the design of energy-efficient on-chip photonic interconnects using BCSP devices. The optimized design of BCSP on-chip links renders more energy-efficiency and aggregate bandwidth than FCSP on-chip links, in spite of the inferior opto-elec-tronic properties of BCSP devices. Our experimental analysis com-pares the use of BCSP and FCSP links at the architecture level, and shows that the optimized design of the BCSP-based Firefly PNoC achieves 1.15x greater throughput and 12.4% less energy-per-bit on average than the optimized design of FCSP-based Firefly PNoC. Similarly, the optimized design of the BCSP-based Corona PNoC achieves 3.5x greater throughput and 39.5% less energy-per-bit on average than the optimized design of FCSP-based Corona PNoC.","PeriodicalId":331624,"journal":{"name":"2016 ACM/IEEE International Workshop on System Level Interconnect Prediction (SLIP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 ACM/IEEE International Workshop on System Level Interconnect Prediction (SLIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2947357.2947362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Photonic devices fabricated with back-end compatible silicon pho-tonic (BCSP) materials can provide independence from the complex CMOS front-end compatible silicon photonic (FCSP) process, to sig-nificantly enhance photonic network-on-chip (PNoC) architecture performance. In this paper, we present a detailed comparative analy-sis of a number of design tradeoffs for CMOS front-end and back-end compatible devices for silicon photonic interconnects. A cross-layer optimization of multiple device-level and link-level design pa-rameters is performed to enable the design of energy-efficient on-chip photonic interconnects using BCSP devices. The optimized design of BCSP on-chip links renders more energy-efficiency and aggregate bandwidth than FCSP on-chip links, in spite of the inferior opto-elec-tronic properties of BCSP devices. Our experimental analysis com-pares the use of BCSP and FCSP links at the architecture level, and shows that the optimized design of the BCSP-based Firefly PNoC achieves 1.15x greater throughput and 12.4% less energy-per-bit on average than the optimized design of FCSP-based Firefly PNoC. Similarly, the optimized design of the BCSP-based Corona PNoC achieves 3.5x greater throughput and 39.5% less energy-per-bit on average than the optimized design of FCSP-based Corona PNoC.
前端和后端兼容硅光子片上互连的比较分析
后端兼容硅光子(BCSP)材料制备的光子器件可以独立于复杂的CMOS前端兼容硅光子(FCSP)工艺,显著提高光子片上网络(PNoC)架构性能。在本文中,我们对硅光子互连的CMOS前端和后端兼容器件的一些设计权衡进行了详细的比较分析。对多个器件级和链路级设计参数进行了跨层优化,以便使用BCSP器件设计节能的片上光子互连。尽管BCSP器件的光电性能较差,但优化设计的BCSP片上链路比FCSP片上链路具有更高的能效和聚合带宽。我们的实验分析比较了BCSP和FCSP链路在架构层面的使用,结果表明,优化设计的基于BCSP的Firefly PNoC的吞吐量比基于FCSP的优化设计的Firefly PNoC提高了1.15倍,平均每比特能耗减少了12.4%。同样,与基于fcsp的Corona PNoC优化设计相比,基于bcsp的Corona PNoC优化设计的吞吐量提高了3.5倍,平均每比特能耗降低了39.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信