A unified race algorithm for offline parameter tuning

T. V. Dijk, M. Mes, J. M. Schutten, J. Gromicho
{"title":"A unified race algorithm for offline parameter tuning","authors":"T. V. Dijk, M. Mes, J. M. Schutten, J. Gromicho","doi":"10.1109/WSC.2014.7020222","DOIUrl":null,"url":null,"abstract":"This paper proposes uRace, a unified race algorithm for efficient offline parameter tuning of deterministic algorithms. We build on the similarity between a stochastic simulation environment and offline tuning of deterministic algorithms, where the stochastic element in the latter is the unknown problem instance given to the algorithm. Inspired by techniques from the simulation optimization literature, uRace enforces fair comparisons among parameter configurations by evaluating their performance on the same training instances. It relies on rapid statistical elimination of inferior parameter configurations and an increasingly localized search of the parameter space to quickly identify good parameter settings. We empirically evaluate uRace by applying it to a parameterized algorithmic framework for loading problems at ORTEC, a global provider of software solutions for complex decision-making problems, and obtain competitive results on a set of practical problem instances from one of the world's largest multinationals in consumer packaged goods.","PeriodicalId":446873,"journal":{"name":"Proceedings of the Winter Simulation Conference 2014","volume":"180 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Winter Simulation Conference 2014","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2014.7020222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes uRace, a unified race algorithm for efficient offline parameter tuning of deterministic algorithms. We build on the similarity between a stochastic simulation environment and offline tuning of deterministic algorithms, where the stochastic element in the latter is the unknown problem instance given to the algorithm. Inspired by techniques from the simulation optimization literature, uRace enforces fair comparisons among parameter configurations by evaluating their performance on the same training instances. It relies on rapid statistical elimination of inferior parameter configurations and an increasingly localized search of the parameter space to quickly identify good parameter settings. We empirically evaluate uRace by applying it to a parameterized algorithmic framework for loading problems at ORTEC, a global provider of software solutions for complex decision-making problems, and obtain competitive results on a set of practical problem instances from one of the world's largest multinationals in consumer packaged goods.
一种用于离线参数调整的统一竞争算法
本文提出了一种统一的竞争算法uRace,用于确定性算法的高效离线参数调优。我们建立在随机模拟环境与确定性算法的离线调优之间的相似性之上,后者中的随机元素是给定给算法的未知问题实例。受仿真优化文献技术的启发,uRace通过在相同的训练实例上评估参数配置的性能来强制参数配置之间的公平比较。它依赖于对劣质参数配置的快速统计消除和对参数空间日益局部化的搜索来快速识别好的参数设置。我们通过将uRace应用于ORTEC(复杂决策问题软件解决方案的全球供应商)加载问题的参数化算法框架,对uRace进行了实证评估,并从世界上最大的包装消费品跨国公司之一的一组实际问题实例中获得了具有竞争力的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信