Defect Classification System for Ski Goggle Lens

Dinh-Thuan Dang, Jing-Wein Wang, Jiann-Shu Lee, Chou-Chen Wang
{"title":"Defect Classification System for Ski Goggle Lens","authors":"Dinh-Thuan Dang, Jing-Wein Wang, Jiann-Shu Lee, Chou-Chen Wang","doi":"10.1109/ISPACS51563.2021.9651116","DOIUrl":null,"url":null,"abstract":"In this work, we build the defect classification system for ski goggle lenses with machine learning. In the first step, we establish the image capturing model and data annotation. In the next step, we apply the classification model based on machine learning for classifying defects such as scratch, watermark, spotlight, border, stain, dust-line, and dust-spot. Besides, to increase the performance, the augmentation method is also applied in the training process. The classification rate achieves 94.34%, while the running time is short.","PeriodicalId":359822,"journal":{"name":"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS51563.2021.9651116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we build the defect classification system for ski goggle lenses with machine learning. In the first step, we establish the image capturing model and data annotation. In the next step, we apply the classification model based on machine learning for classifying defects such as scratch, watermark, spotlight, border, stain, dust-line, and dust-spot. Besides, to increase the performance, the augmentation method is also applied in the training process. The classification rate achieves 94.34%, while the running time is short.
滑雪护目镜镜头缺陷分类系统
在这项工作中,我们利用机器学习建立了滑雪护目镜镜头缺陷分类系统。首先,建立图像捕获模型和数据标注。下一步,我们应用基于机器学习的分类模型对划痕、水印、聚光灯、边框、污迹、尘线、尘斑等缺陷进行分类。此外,为了提高训练性能,在训练过程中还采用了增强法。分类率达到94.34%,运行时间短。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信