Deep Correlation Features for Image Style Classification

W. Chu, Yi-Ling Wu
{"title":"Deep Correlation Features for Image Style Classification","authors":"W. Chu, Yi-Ling Wu","doi":"10.1145/2964284.2967251","DOIUrl":null,"url":null,"abstract":"This paper presents a comprehensive study of deep correlation features on image style classification. Inspired by that correlation between feature maps can effectively describe image texture, we design and transform various such correlations into style vectors, and investigate classification performance brought by different variants. In addition to intra-layer correlation, we also propose inter-layer correlation and verify its benefit. Through extensive experiments on image style classification and artist classification, we demonstrate that the proposed style vectors significantly outperforms CNN features coming from fully-connected layers, as well as outperforms the state-of-the-art deep representation.","PeriodicalId":140670,"journal":{"name":"Proceedings of the 24th ACM international conference on Multimedia","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2964284.2967251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

This paper presents a comprehensive study of deep correlation features on image style classification. Inspired by that correlation between feature maps can effectively describe image texture, we design and transform various such correlations into style vectors, and investigate classification performance brought by different variants. In addition to intra-layer correlation, we also propose inter-layer correlation and verify its benefit. Through extensive experiments on image style classification and artist classification, we demonstrate that the proposed style vectors significantly outperforms CNN features coming from fully-connected layers, as well as outperforms the state-of-the-art deep representation.
图像样式分类的深度相关特征
本文对图像样式分类中的深度相关特征进行了全面的研究。受特征映射之间的相关性可以有效描述图像纹理的启发,我们将各种特征映射之间的相关性设计并转化为样式向量,并研究不同变体带来的分类性能。除了层内相关,我们还提出了层间相关,并验证了其效益。通过对图像风格分类和艺术家分类的大量实验,我们证明了所提出的风格向量明显优于来自完全连接层的CNN特征,并且优于最先进的深度表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信