Algorithms for Compressed Inputs

Nathan Brunelle, G. Robins, Abhi Shelat
{"title":"Algorithms for Compressed Inputs","authors":"Nathan Brunelle, G. Robins, Abhi Shelat","doi":"10.1109/DCC.2013.60","DOIUrl":null,"url":null,"abstract":"We study compression-aware algorithms, i.e. algorithms that can exploit regularity in their input data by directly operating on compressed data. While popular with string algorithms, we consider this idea for algorithms operating on numeric sequences and graphs that have been compressed using a variety of schemes including LZ77, grammar-based compression, a graph interpretation of Re-Pair, and a method presented by Boldi and Vigna in The Web Graph Framework. In all cases, we discover algorithms outperforming a trivial approach: to decompress the input and run a standard algorithm. We aim to develop an algorithmic toolkit for basic tasks to operate on a variety of compression inputs.","PeriodicalId":388717,"journal":{"name":"2013 Data Compression Conference","volume":"22 6S 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2013.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We study compression-aware algorithms, i.e. algorithms that can exploit regularity in their input data by directly operating on compressed data. While popular with string algorithms, we consider this idea for algorithms operating on numeric sequences and graphs that have been compressed using a variety of schemes including LZ77, grammar-based compression, a graph interpretation of Re-Pair, and a method presented by Boldi and Vigna in The Web Graph Framework. In all cases, we discover algorithms outperforming a trivial approach: to decompress the input and run a standard algorithm. We aim to develop an algorithmic toolkit for basic tasks to operate on a variety of compression inputs.
压缩输入的算法
我们研究压缩感知算法,即通过直接操作压缩数据来利用输入数据中的规律性的算法。虽然在字符串算法中很流行,但我们认为这个想法适用于使用各种方案压缩的数字序列和图的算法,包括LZ77、基于语法的压缩、Re-Pair的图解释以及Boldi和Vigna在The Web graph Framework中提出的方法。在所有情况下,我们都发现算法优于一种简单的方法:解压缩输入并运行标准算法。我们的目标是为基本任务开发一个算法工具包,以在各种压缩输入上操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信