A Hopfield neural network based approach for state estimation of power systems embedded with FACTS devices

S.K. Singh, J. Sharma
{"title":"A Hopfield neural network based approach for state estimation of power systems embedded with FACTS devices","authors":"S.K. Singh, J. Sharma","doi":"10.1109/POWERI.2006.1632574","DOIUrl":null,"url":null,"abstract":"Flexible A.C. transmission systems (FACTS) are being used more in large power systems for their significance in manipulating line power flows. Traditional state estimation methods without integrating FACTS devices will not be suitable for power systems embedded with FACTS. In this paper the state estimation of power systems in presence of FACTS devices is presented. Hopfield neural network is simulated as an optimization tool to solve the power system state estimation problem","PeriodicalId":191301,"journal":{"name":"2006 IEEE Power India Conference","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Power India Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/POWERI.2006.1632574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Flexible A.C. transmission systems (FACTS) are being used more in large power systems for their significance in manipulating line power flows. Traditional state estimation methods without integrating FACTS devices will not be suitable for power systems embedded with FACTS. In this paper the state estimation of power systems in presence of FACTS devices is presented. Hopfield neural network is simulated as an optimization tool to solve the power system state estimation problem
基于Hopfield神经网络的嵌入式FACTS系统状态估计方法
柔性交流输电系统由于其在控制线路潮流方面的重要作用,在大型电力系统中得到了越来越多的应用。传统的不集成事实器件的状态估计方法不适用于嵌入事实器件的电力系统。本文研究了存在FACTS装置的电力系统的状态估计问题。仿真了Hopfield神经网络作为解决电力系统状态估计问题的优化工具
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信