Revising Markov boundary for multiagent probabilistic inference

X. An, Y. Xiang, N. Cercone
{"title":"Revising Markov boundary for multiagent probabilistic inference","authors":"X. An, Y. Xiang, N. Cercone","doi":"10.1109/IAT.2004.1342932","DOIUrl":null,"url":null,"abstract":"Multiply sectioned Bayesian networks (MSBNs) extend Bayesian networks (BNs) to graphical models that provide a coherent framework for probabilistic inference in cooperative multiagent distributed interpretation systems. Observation plays an important role in the inference with graphical models. Since observation of each observable variable has a cost, it would be helpful if we can find the most relevant variables to observe. In a probabilistic model, a Markov boundary of a variable provides a minimal set of variables that shields the variable from the influence of all other variables. However, the concept cannot be used directly for observation. First, it is generally intractable to verify conditional independencies in a probabilistic model. Second, the Markov boundary members may not be observable. Third, it is defined only for a single variable. Finally, it is not unique. By revising the concept to address these issues, we introduce the concept of observable Markov boundary of a set of nodes defined on d-separation of graphical models. The observable Markov boundary captures all relevant variables to observe for probabilistic inference with graphical models. In an MSBN, the observable Markov boundary of a set of nodes may span across all Bayesian subnets. We present an algorithm for cooperative computation of the observable Markov boundary of a set of nodes in an MSBN without revealing subnet structures.","PeriodicalId":281008,"journal":{"name":"Proceedings. IEEE/WIC/ACM International Conference on Intelligent Agent Technology, 2004. (IAT 2004).","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE/WIC/ACM International Conference on Intelligent Agent Technology, 2004. (IAT 2004).","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAT.2004.1342932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Multiply sectioned Bayesian networks (MSBNs) extend Bayesian networks (BNs) to graphical models that provide a coherent framework for probabilistic inference in cooperative multiagent distributed interpretation systems. Observation plays an important role in the inference with graphical models. Since observation of each observable variable has a cost, it would be helpful if we can find the most relevant variables to observe. In a probabilistic model, a Markov boundary of a variable provides a minimal set of variables that shields the variable from the influence of all other variables. However, the concept cannot be used directly for observation. First, it is generally intractable to verify conditional independencies in a probabilistic model. Second, the Markov boundary members may not be observable. Third, it is defined only for a single variable. Finally, it is not unique. By revising the concept to address these issues, we introduce the concept of observable Markov boundary of a set of nodes defined on d-separation of graphical models. The observable Markov boundary captures all relevant variables to observe for probabilistic inference with graphical models. In an MSBN, the observable Markov boundary of a set of nodes may span across all Bayesian subnets. We present an algorithm for cooperative computation of the observable Markov boundary of a set of nodes in an MSBN without revealing subnet structures.
修正多智能体概率推理的马尔可夫边界
多分割贝叶斯网络(msbn)将贝叶斯网络扩展到图形模型,为协同多智能体分布式解释系统中的概率推理提供了一个连贯的框架。观察值在图形模型推理中起着重要的作用。因为观察每个可观察变量都有成本,所以如果我们能找到最相关的变量来观察将会很有帮助。在概率模型中,变量的马尔可夫边界提供了一组最小变量,使该变量不受所有其他变量的影响。然而,这个概念不能直接用于观察。首先,通常难以在概率模型中验证条件独立性。其次,马尔可夫边界成员可能是不可观测的。第三,它仅为单个变量定义。最后,它不是唯一的。通过修改概念来解决这些问题,我们引入了在图模型的d分离上定义的一组节点的可观察马尔可夫边界的概念。可观察的马尔可夫边界捕获所有相关变量,以观察与图形模型的概率推断。在MSBN中,一组节点的可观察马尔可夫边界可以跨越所有贝叶斯子网。提出了一种在不暴露子网结构的情况下协同计算MSBN中一组节点的可观测马尔可夫边界的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信