Automated Evaluation of Handwritten Answer Script Using Deep Learning Approach

Md. Afzalur Rahaman, H. Mahmud
{"title":"Automated Evaluation of Handwritten Answer Script Using Deep Learning Approach","authors":"Md. Afzalur Rahaman, H. Mahmud","doi":"10.14738/tmlai.104.12831","DOIUrl":null,"url":null,"abstract":"\n\n\nAutomatic Essay Grading (AEG) is one of the exciting research topics in the field of adopting technology in education. In the education system assessment of student’s answer script is a critical job of teachers; yet doing so consumes a significant amount of their time and prevents them from working on other tasks. In addition, evaluating a large number of exam scripts is error-prone, inefficient, and tedious. Natural Language Processing (NLP), has created such an opportunity to make the computer learn about written text data and make important decisions based on the learned model. Similarly, it is possible to make a computer be able to assess an answering script based on the model used to train our computer to learn about answers to predefined short questions. In this paper, we propose a deep learning architecture with a combination of Con- volutional Neural Network (CNN) and Bidirectional Long Short Term Memory (BiLSTM) which has the ability to perform both handwritten answers recogni- tion and grading them as accurately as a human expert grader.\n\n\n","PeriodicalId":119801,"journal":{"name":"Transactions on Machine Learning and Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Machine Learning and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14738/tmlai.104.12831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Automatic Essay Grading (AEG) is one of the exciting research topics in the field of adopting technology in education. In the education system assessment of student’s answer script is a critical job of teachers; yet doing so consumes a significant amount of their time and prevents them from working on other tasks. In addition, evaluating a large number of exam scripts is error-prone, inefficient, and tedious. Natural Language Processing (NLP), has created such an opportunity to make the computer learn about written text data and make important decisions based on the learned model. Similarly, it is possible to make a computer be able to assess an answering script based on the model used to train our computer to learn about answers to predefined short questions. In this paper, we propose a deep learning architecture with a combination of Con- volutional Neural Network (CNN) and Bidirectional Long Short Term Memory (BiLSTM) which has the ability to perform both handwritten answers recogni- tion and grading them as accurately as a human expert grader.
使用深度学习方法的手写答案脚本的自动评估
论文自动评分(AEG)是当今教育技术应用领域的热门研究课题之一。在教育系统中,学生答卷评估是教师的一项重要工作;然而,这样做消耗了他们大量的时间,并妨碍了他们处理其他任务。此外,评估大量的考试脚本容易出错,效率低下,而且冗长乏味。自然语言处理(NLP)创造了这样一个机会,让计算机学习书面文本数据,并根据学习模型做出重要决策。类似地,我们也可以让计算机能够基于训练计算机学习预定义短问题答案的模型来评估回答脚本。在本文中,我们提出了一种结合卷积神经网络(CNN)和双向长短期记忆(BiLSTM)的深度学习架构,该架构能够像人类专家评分一样准确地进行手写答案识别和评分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信