A Comprehensive Study of Feature Representations for Semantic Concept Detection

Duy-Dinh Le, S. Satoh
{"title":"A Comprehensive Study of Feature Representations for Semantic Concept Detection","authors":"Duy-Dinh Le, S. Satoh","doi":"10.1109/ICSC.2011.92","DOIUrl":null,"url":null,"abstract":"In this paper, we study the performance of global features and local features for the semantic concept detection problem, which is a crucial task for video indexing and retrieval applications. We have performed a comprehensive evaluation of these features on TRECVID datasets that are used in the concept detection benchmark from 2005 to 2009. The experimental results show that with appropriate choice of parameters, global features such as local binary patterns and edge orientation histogram can achieve reasonable performance compared with local features using BoW model while requiring fewer number of parameters to be tuned and lower computational cost. Furthermore, we also investigate on how to design a compact concept detection system that can balance between computational cost and accuracy.","PeriodicalId":408382,"journal":{"name":"2011 IEEE Fifth International Conference on Semantic Computing","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Fifth International Conference on Semantic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSC.2011.92","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper, we study the performance of global features and local features for the semantic concept detection problem, which is a crucial task for video indexing and retrieval applications. We have performed a comprehensive evaluation of these features on TRECVID datasets that are used in the concept detection benchmark from 2005 to 2009. The experimental results show that with appropriate choice of parameters, global features such as local binary patterns and edge orientation histogram can achieve reasonable performance compared with local features using BoW model while requiring fewer number of parameters to be tuned and lower computational cost. Furthermore, we also investigate on how to design a compact concept detection system that can balance between computational cost and accuracy.
语义概念检测中特征表示的综合研究
本文研究了语义概念检测问题的全局特征和局部特征的性能,这是视频索引和检索应用的关键任务。我们在2005年至2009年的概念检测基准中使用的TRECVID数据集上对这些特征进行了全面评估。实验结果表明,在适当选择参数的情况下,局部二值模式和边缘方向直方图等全局特征与使用BoW模型的局部特征相比,可以获得合理的性能,而且需要调整的参数数量更少,计算成本更低。此外,我们还研究了如何设计一个紧凑的概念检测系统,以平衡计算成本和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信