{"title":"Modified invasive weed optimization with dual mutation technique for dynamic economic dispatch","authors":"Renu Sharma, N. Nayak, K. R. Krishnanand, P. Rout","doi":"10.1109/ICEAS.2011.6147185","DOIUrl":null,"url":null,"abstract":"Dynamic economic dispatch (DED) is one of the main functions of power system operation and control. It determines the optimal operation of units with predicted load demands over a certain period of time with an objective to minimize total production cost while the system is operating within its ramp rate limits. This paper presents DED based on Invasive Weed Optimization (IWO) technique for the determination of the global or near global optimum dispatch solution. In the present case, load balance constraints, operating limits, valve-point loading, ramp constraints, and network losses using loss coefficients are incorporated. Numerical results for a sample test system (10-unit) have been presented to demonstrate the performance and applicability of the proposed method.","PeriodicalId":273164,"journal":{"name":"2011 International Conference on Energy, Automation and Signal","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Energy, Automation and Signal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEAS.2011.6147185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
Dynamic economic dispatch (DED) is one of the main functions of power system operation and control. It determines the optimal operation of units with predicted load demands over a certain period of time with an objective to minimize total production cost while the system is operating within its ramp rate limits. This paper presents DED based on Invasive Weed Optimization (IWO) technique for the determination of the global or near global optimum dispatch solution. In the present case, load balance constraints, operating limits, valve-point loading, ramp constraints, and network losses using loss coefficients are incorporated. Numerical results for a sample test system (10-unit) have been presented to demonstrate the performance and applicability of the proposed method.