Chirplet-Atoms Network Approach to High-Resolution Range Profiles Automatic Target Recognition

Yifei Li, Zunhua Guo
{"title":"Chirplet-Atoms Network Approach to High-Resolution Range Profiles Automatic Target Recognition","authors":"Yifei Li, Zunhua Guo","doi":"10.1109/CISP-BMEI.2018.8633206","DOIUrl":null,"url":null,"abstract":"Since radar back-scattering from a real target can be very complex, a Chirplet-atoms network approach to automatic target recognition using high resolution range profiles (HRRP)is proposed in this paper. Based on the multilayer feed-forward neural network structure, the Chirplet-atom transform is used to the input layer for feature extraction, and the hidden layer and output layer constitute a classifier. The network weights and the parameters of Chirplet-atom node are simultaneously adjusted to achieve joint feature extraction and target classification. The simulation results of four aircrafts have shown that the Chirplet-atoms network approach has better recognition rates and noisy immunity.","PeriodicalId":117227,"journal":{"name":"2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI.2018.8633206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Since radar back-scattering from a real target can be very complex, a Chirplet-atoms network approach to automatic target recognition using high resolution range profiles (HRRP)is proposed in this paper. Based on the multilayer feed-forward neural network structure, the Chirplet-atom transform is used to the input layer for feature extraction, and the hidden layer and output layer constitute a classifier. The network weights and the parameters of Chirplet-atom node are simultaneously adjusted to achieve joint feature extraction and target classification. The simulation results of four aircrafts have shown that the Chirplet-atoms network approach has better recognition rates and noisy immunity.
高分辨率距离轮廓自动目标识别的啁啾原子网络方法
由于真实目标的雷达后向散射非常复杂,本文提出了一种基于高分辨率距离像(HRRP)的chirplet -原子网络自动目标识别方法。基于多层前馈神经网络结构,对输入层采用Chirplet-atom变换进行特征提取,隐藏层和输出层构成分类器。同时调整网络权值和Chirplet-atom节点参数,实现联合特征提取和目标分类。四架飞机的仿真结果表明,啁啾原子网络方法具有较好的识别率和抗噪能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信