Speaker Verification using Vector Quantization and Hidden Markov Model

M. Z. Ilyas, S. Samad, A. Hussain, K. A. Ishak
{"title":"Speaker Verification using Vector Quantization and Hidden Markov Model","authors":"M. Z. Ilyas, S. Samad, A. Hussain, K. A. Ishak","doi":"10.1109/SCORED.2007.4451419","DOIUrl":null,"url":null,"abstract":"This paper presents a speaker verification system using a combination of vector quantization (VQ) and hidden Markov model (HMM) to improve the HMM performance. A Malay spoken digit database which contains 100 speakers is used for the testing and validation modules. It is shown that, by using the proposed combination technique, a total success rate (TSR) of 99.97% is achieved and it is an improvement of 11.24% in performance compared to HMM. For speaker verification, true speaker rejection rate, impostor acceptance rate and equal error rate (EER) are also improved significantly compared to HMM.","PeriodicalId":443652,"journal":{"name":"2007 5th Student Conference on Research and Development","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 5th Student Conference on Research and Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCORED.2007.4451419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

This paper presents a speaker verification system using a combination of vector quantization (VQ) and hidden Markov model (HMM) to improve the HMM performance. A Malay spoken digit database which contains 100 speakers is used for the testing and validation modules. It is shown that, by using the proposed combination technique, a total success rate (TSR) of 99.97% is achieved and it is an improvement of 11.24% in performance compared to HMM. For speaker verification, true speaker rejection rate, impostor acceptance rate and equal error rate (EER) are also improved significantly compared to HMM.
基于矢量量化和隐马尔可夫模型的说话人验证
为了提高隐马尔可夫模型的性能,提出了一种结合矢量量化(VQ)和隐马尔可夫模型的说话人验证系统。马来语口语数字数据库包含100个发言者被用于测试和验证模块。结果表明,采用该组合技术,总成功率(TSR)达到99.97%,性能比HMM提高11.24%。在说话人验证方面,与HMM相比,真说话人拒绝率、冒名顶替者接受率和等错误率(EER)也有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信