Image segmentation in Diagnosing the Ground Bud Necrosis Virus in Tomatoes using K-Means Clustering

K. U. Kadam, R. B. Dhumale, N. R. Dhumale, S. S. Nikam, P. B. Mane
{"title":"Image segmentation in Diagnosing the Ground Bud Necrosis Virus in Tomatoes using K-Means Clustering","authors":"K. U. Kadam, R. B. Dhumale, N. R. Dhumale, S. S. Nikam, P. B. Mane","doi":"10.37391/ijeer.110306","DOIUrl":null,"url":null,"abstract":"Early-stage fruit disease detection will ensure the natural product quality for the organic agriculture business. The potential of using K-Means segmentation for diagnosing tomatoes fruit disease was intended to be explored by this proposed method. The main goal of paper is to increase classification accuracy by locating tomatoes with Ground Bud Necrosis Virus in Tomatoes disease using an image segmentation approach. The K-means clustering algorithm is intended to boost segmentation effectiveness. In the end product, the images are divided into three classes: Grade 0—00-15%; Grade 1—16-35%; Grade 2—36-65%; Grade 3—66-85%; and Class 4—86-100%. Moreover, the tested results of the proposed approach explore a variety of unhealthy images and disease Tomatoes and demonstrate that, when compared to existing methods, the proposed method has the highest accuracy.","PeriodicalId":158560,"journal":{"name":"International Journal of Electrical and Electronics Research","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Electronics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37391/ijeer.110306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Early-stage fruit disease detection will ensure the natural product quality for the organic agriculture business. The potential of using K-Means segmentation for diagnosing tomatoes fruit disease was intended to be explored by this proposed method. The main goal of paper is to increase classification accuracy by locating tomatoes with Ground Bud Necrosis Virus in Tomatoes disease using an image segmentation approach. The K-means clustering algorithm is intended to boost segmentation effectiveness. In the end product, the images are divided into three classes: Grade 0—00-15%; Grade 1—16-35%; Grade 2—36-65%; Grade 3—66-85%; and Class 4—86-100%. Moreover, the tested results of the proposed approach explore a variety of unhealthy images and disease Tomatoes and demonstrate that, when compared to existing methods, the proposed method has the highest accuracy.
基于k均值聚类的番茄地芽坏死病毒图像分割
早期水果病害检测将确保有机农业企业的天然产品质量。利用该方法探讨了k均值分割在番茄果实病害诊断中的应用潜力。本文的主要目的是利用图像分割方法对番茄病害中含有地芽坏死病毒的番茄进行定位,提高分类精度。k均值聚类算法旨在提高分割效果。在最终产品中,图像分为三类:Grade 0-00-15%;等级1 - 16 - 35%;等级2 - 36 - 65%;等级3 - 66 - 85%;4-86-100%。此外,该方法的测试结果探索了各种不健康图像和疾病番茄,并表明,与现有方法相比,该方法具有最高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信