Improving Robustness of Network Fault Diagnosis to Uncertainty in Observations

Jesper Grønbæk, H. Schwefel, A. Ceccarelli, A. Bondavalli
{"title":"Improving Robustness of Network Fault Diagnosis to Uncertainty in Observations","authors":"Jesper Grønbæk, H. Schwefel, A. Ceccarelli, A. Bondavalli","doi":"10.1109/NCA.2010.41","DOIUrl":null,"url":null,"abstract":"Performing decentralized network fault diagnosis based on network traffic is challenging. Besides inherent stochastic behaviour of observations, measurements may be subject to errors degrading diagnosis timeliness and accuracy. In this paper we present a novel approach in which we aim to mitigate issues of measurement errors by quantifying uncertainty. The uncertainty information is applied in the diagnostic component to improve its robustness. Three diagnosis components have been proposed based on the Hidden Markov Model formalism: (H0) representing a classical approach, (H1) a static compensation of (H0) to uncertainties and (H2) dynamically adapting diagnosis to uncertainty information. From uncertainty injection scenarios of added measurement noise we demonstrate how using uncertainty information can provide a structured approach of improving diagnosis.","PeriodicalId":276374,"journal":{"name":"2010 Ninth IEEE International Symposium on Network Computing and Applications","volume":"51 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth IEEE International Symposium on Network Computing and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCA.2010.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Performing decentralized network fault diagnosis based on network traffic is challenging. Besides inherent stochastic behaviour of observations, measurements may be subject to errors degrading diagnosis timeliness and accuracy. In this paper we present a novel approach in which we aim to mitigate issues of measurement errors by quantifying uncertainty. The uncertainty information is applied in the diagnostic component to improve its robustness. Three diagnosis components have been proposed based on the Hidden Markov Model formalism: (H0) representing a classical approach, (H1) a static compensation of (H0) to uncertainties and (H2) dynamically adapting diagnosis to uncertainty information. From uncertainty injection scenarios of added measurement noise we demonstrate how using uncertainty information can provide a structured approach of improving diagnosis.
提高网络故障诊断对观测值不确定性的鲁棒性
基于网络流量进行分散的网络故障诊断具有一定的挑战性。除了观察的固有随机行为外,测量可能会出现降低诊断及时性和准确性的错误。在本文中,我们提出了一种新的方法,我们的目标是通过量化不确定性来减轻测量误差的问题。将不确定度信息应用到诊断组件中,提高了诊断组件的鲁棒性。基于隐马尔可夫模型的形式,提出了三个诊断组件:(H0)代表经典方法,(H1)对不确定性的静态补偿,(H2)对不确定性信息的动态适应诊断。从添加测量噪声的不确定度注入场景中,我们展示了如何使用不确定度信息可以提供改进诊断的结构化方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信