Common-rail pressure estimation using a Neuro-Fuzzy architecture with local Hammerstein models

Gelu Laurentiu Ioanas, T. Dragomir
{"title":"Common-rail pressure estimation using a Neuro-Fuzzy architecture with local Hammerstein models","authors":"Gelu Laurentiu Ioanas, T. Dragomir","doi":"10.1109/SACI.2013.6608983","DOIUrl":null,"url":null,"abstract":"Hydraulic processes with turbulent flow are usually highly nonlinear and common rail (CR) systems make no exception. Since the performances of diesel CR engines are directly dependent on the rail pressure, and on its values used in control, a prediction model which can lead to better performances is presented. The prediction makes use of Hammerstein dynamic models integrated into a multilevel Neuro-Fuzzy structure. The process input space decomposition is performed axis orthogonal for a large region using Local Linear Model Tree (LOLIMOT) algorithm and the local dynamic models parameters are adapted using recursive last squares method. The practical final results are favorable.","PeriodicalId":304729,"journal":{"name":"2013 IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"80 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI.2013.6608983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Hydraulic processes with turbulent flow are usually highly nonlinear and common rail (CR) systems make no exception. Since the performances of diesel CR engines are directly dependent on the rail pressure, and on its values used in control, a prediction model which can lead to better performances is presented. The prediction makes use of Hammerstein dynamic models integrated into a multilevel Neuro-Fuzzy structure. The process input space decomposition is performed axis orthogonal for a large region using Local Linear Model Tree (LOLIMOT) algorithm and the local dynamic models parameters are adapted using recursive last squares method. The practical final results are favorable.
共轨压力估计使用神经模糊架构与局部Hammerstein模型
具有湍流的水力过程通常是高度非线性的,共轨系统也不例外。由于柴油机的性能直接取决于轨道压力及其在控制中的取值,因此提出了一种能够提高柴油机性能的预测模型。该预测利用Hammerstein动态模型集成到多层次神经模糊结构中。采用局部线性模型树(LOLIMOT)算法对大范围的过程输入空间进行轴正交分解,采用递推最后平方法对局部动态模型参数进行自适应。实际的最终结果是良好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信