{"title":"Deep Learning-Based Medical Image Fusion Using Integrated Joint Slope Analysis with Probabilistic Parametric Steered Image Filter","authors":"E. S. Rao, C. Prasad","doi":"10.1142/s0219467822400137","DOIUrl":null,"url":null,"abstract":"Medical image fusion plays a significant role in medical diagnosis applications. Although the conventional approaches have produced moderate visual analysis, still there is a scope to improve the performance parameters and reduce the computational complexity. Thus, this article implemented the hybrid fusion method by using the novel implementation of joint slope analysis (JSA), probabilistic parametric steered image filtration (PPSIF), and deep learning convolutional neural networks (DLCNNs)-based SR Fusion Net. Here, JSA decomposes the images to estimate edge-based slopes and develops the edge-preserving approximate layers from the multi-modal medical images. Further, PPSIF is used to generate the feature fusion with base layer-based weight maps. Then, the SR Fusion Net is used to generate the spatial and texture feature-based weight maps. Finally, optimal fusion rule is applied on the detail layers generated from the base layer and approximate layer, which resulted in the fused outcome. The proposed method is capable of performing the fusion operation between various modalities of images, such as MRI-CT, MRI-PET, and MRI-SPECT combinations by using two different architectures. The simulation results show that the proposed method resulted in better subjective and objective performance as compared to state of art approaches.","PeriodicalId":177479,"journal":{"name":"Int. J. Image Graph.","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Image Graph.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219467822400137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Medical image fusion plays a significant role in medical diagnosis applications. Although the conventional approaches have produced moderate visual analysis, still there is a scope to improve the performance parameters and reduce the computational complexity. Thus, this article implemented the hybrid fusion method by using the novel implementation of joint slope analysis (JSA), probabilistic parametric steered image filtration (PPSIF), and deep learning convolutional neural networks (DLCNNs)-based SR Fusion Net. Here, JSA decomposes the images to estimate edge-based slopes and develops the edge-preserving approximate layers from the multi-modal medical images. Further, PPSIF is used to generate the feature fusion with base layer-based weight maps. Then, the SR Fusion Net is used to generate the spatial and texture feature-based weight maps. Finally, optimal fusion rule is applied on the detail layers generated from the base layer and approximate layer, which resulted in the fused outcome. The proposed method is capable of performing the fusion operation between various modalities of images, such as MRI-CT, MRI-PET, and MRI-SPECT combinations by using two different architectures. The simulation results show that the proposed method resulted in better subjective and objective performance as compared to state of art approaches.