ECG-TCN: Wearable Cardiac Arrhythmia Detection with a Temporal Convolutional Network

Thorir Mar Ingolfsson, Xiaying Wang, Michael Hersche, A. Burrello, L. Cavigelli, L. Benini
{"title":"ECG-TCN: Wearable Cardiac Arrhythmia Detection with a Temporal Convolutional Network","authors":"Thorir Mar Ingolfsson, Xiaying Wang, Michael Hersche, A. Burrello, L. Cavigelli, L. Benini","doi":"10.1109/AICAS51828.2021.9458520","DOIUrl":null,"url":null,"abstract":"Personalized ubiquitous healthcare solutions require energy-efficient wearable platforms that provide an accurate classification of bio-signals while consuming low average power for long-term battery-operated use. Single lead electrocardiogram (ECG) signals provide the ability to detect, classify, and even predict cardiac arrhythmia. In this paper we propose a novel temporal convolutional network (TCN) that achieves high accuracy while still being feasible for wearable platform use. Experimental results on the ECG5000 dataset show that the TCN has a similar accuracy (94.2%) score as the state-of-the-art (SoA) network while achieving an improvement of 16.5% in the balanced accuracy score. This accurate classification is done with $27 \\times$ fewer parameters and $37 \\times$ less multiply-accumulate operations. We test our implementation on two publicly available platforms, the STM32L475, which is based on ARM Cortex M4F, and the GreenWaves Technologies GAP8 on the GAPuino board, based on $1 +8$ RISC-V CV32E40P cores. Measurements show that the GAP8 implementation respects the real-time constraints while consuming 0.10mJ per inference. With 9.91GMAC/s/W, it is $23.0 \\times$ more energy-efficient and $46.85 \\times$ faster than an implementation on the ARM Cortex M4F (0.43GMAC/s/W). Overall, we obtain 8.1% higher accuracy while consuming $19.6\\times$ less energy and being $35.1 \\times$ faster compared to a previous SoA embedded implementation.","PeriodicalId":173204,"journal":{"name":"2021 IEEE 3rd International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 3rd International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS51828.2021.9458520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Personalized ubiquitous healthcare solutions require energy-efficient wearable platforms that provide an accurate classification of bio-signals while consuming low average power for long-term battery-operated use. Single lead electrocardiogram (ECG) signals provide the ability to detect, classify, and even predict cardiac arrhythmia. In this paper we propose a novel temporal convolutional network (TCN) that achieves high accuracy while still being feasible for wearable platform use. Experimental results on the ECG5000 dataset show that the TCN has a similar accuracy (94.2%) score as the state-of-the-art (SoA) network while achieving an improvement of 16.5% in the balanced accuracy score. This accurate classification is done with $27 \times$ fewer parameters and $37 \times$ less multiply-accumulate operations. We test our implementation on two publicly available platforms, the STM32L475, which is based on ARM Cortex M4F, and the GreenWaves Technologies GAP8 on the GAPuino board, based on $1 +8$ RISC-V CV32E40P cores. Measurements show that the GAP8 implementation respects the real-time constraints while consuming 0.10mJ per inference. With 9.91GMAC/s/W, it is $23.0 \times$ more energy-efficient and $46.85 \times$ faster than an implementation on the ARM Cortex M4F (0.43GMAC/s/W). Overall, we obtain 8.1% higher accuracy while consuming $19.6\times$ less energy and being $35.1 \times$ faster compared to a previous SoA embedded implementation.
ECG-TCN:基于时间卷积网络的可穿戴心律失常检测
个性化的无所不在的医疗保健解决方案需要节能的可穿戴平台,这些平台可以提供准确的生物信号分类,同时降低电池长期使用的平均功耗。单导联心电图(ECG)信号提供检测、分类甚至预测心律失常的能力。在本文中,我们提出了一种新的时间卷积网络(TCN),该网络在实现高精度的同时仍然适用于可穿戴平台。在ECG5000数据集上的实验结果表明,TCN具有与最先进(SoA)网络相似的准确率(94.2%)得分,同时在平衡准确率得分上实现了16.5%的改进。这种准确的分类是通过减少27倍的参数和37倍的乘法累加操作完成的。我们在两个公开可用的平台上测试我们的实现,基于ARM Cortex M4F的STM32L475和基于1 +8美元RISC-V CV32E40P内核的gapino板上的GreenWaves Technologies GAP8。测量表明,GAP8实现在每个推理消耗0.1 mj的同时尊重实时约束。在9.91GMAC/s/W的情况下,它比ARM Cortex M4F (0.43GMAC/s/W)的实现节能23.0倍,速度46.85倍。总的来说,与之前的SoA嵌入式实现相比,我们获得了8.1%的更高精度,同时消耗了19.6美元的能量,速度提高了35.1美元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信