{"title":"An all-digital phase-locked loop for high-speed clock generation","authors":"Ching-Che Chung, Chen-Yi Lee","doi":"10.1109/ISCAS.2002.1010315","DOIUrl":null,"url":null,"abstract":"An all-digital phase-locked loop (ADPLL) for high-speed clock generation is presented in this paper. The proposed ADPLL architecture can be implemented with standard cells. And the ADPLL implemented in a 0.35 /spl mu/m 1P4M CMOS process can operate from 40 MHz to 540 MHz. The p-p jitter of the output clock is less than /spl plusmn/170 ps, and the rms jitter of the output clock is less than 39 ps. A systematic way to design the ADPLL with specified standard cell library is also introduced. The proposed ADPLL can easily be ported to different processes in a short time. Thus it can reduce the design time and design complexity of ADPLL, making it very suitable for System-On-Chip (SoC) applications.","PeriodicalId":203750,"journal":{"name":"2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"239","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2002.1010315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 239
Abstract
An all-digital phase-locked loop (ADPLL) for high-speed clock generation is presented in this paper. The proposed ADPLL architecture can be implemented with standard cells. And the ADPLL implemented in a 0.35 /spl mu/m 1P4M CMOS process can operate from 40 MHz to 540 MHz. The p-p jitter of the output clock is less than /spl plusmn/170 ps, and the rms jitter of the output clock is less than 39 ps. A systematic way to design the ADPLL with specified standard cell library is also introduced. The proposed ADPLL can easily be ported to different processes in a short time. Thus it can reduce the design time and design complexity of ADPLL, making it very suitable for System-On-Chip (SoC) applications.