A parallel random forest classifier for R

ECMLS '11 Pub Date : 2011-06-08 DOI:10.1145/1996023.1996024
L. Mitchell, T. Sloan, M. Mewissen, P. Ghazal, T. Forster, M. Piotrowski, A. Trew
{"title":"A parallel random forest classifier for R","authors":"L. Mitchell, T. Sloan, M. Mewissen, P. Ghazal, T. Forster, M. Piotrowski, A. Trew","doi":"10.1145/1996023.1996024","DOIUrl":null,"url":null,"abstract":"The statistical language R is favoured by many biostaticians for processing microarray data. In recent times, the quantity of data that can be obtained in experiments has risen significantly, making previously fast analyses time consuming, or even not possible at all with the existing software infrastructure. High Performance Computing (HPC) systems offer a solution to these problems, but at the expense of increased complexity for the end user. The Simple Parallel R Interface (SPRINT) is a library for R that aims to reduce the complexity of using HPC systems by providing biostatisticians with drop-in parallelized replacements of existing R functions. In this paper we describe the implementation of a parallel version of the Random Forest classifier in the SPRINT library.","PeriodicalId":377641,"journal":{"name":"ECMLS '11","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECMLS '11","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1996023.1996024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

The statistical language R is favoured by many biostaticians for processing microarray data. In recent times, the quantity of data that can be obtained in experiments has risen significantly, making previously fast analyses time consuming, or even not possible at all with the existing software infrastructure. High Performance Computing (HPC) systems offer a solution to these problems, but at the expense of increased complexity for the end user. The Simple Parallel R Interface (SPRINT) is a library for R that aims to reduce the complexity of using HPC systems by providing biostatisticians with drop-in parallelized replacements of existing R functions. In this paper we describe the implementation of a parallel version of the Random Forest classifier in the SPRINT library.
R的并行随机森林分类器
统计语言R被许多生物静力学家用来处理微阵列数据。最近,可以在实验中获得的数据量显著增加,使得以前的快速分析变得非常耗时,甚至在现有的软件基础结构下根本不可能。高性能计算(HPC)系统为这些问题提供了解决方案,但代价是增加了最终用户的复杂性。简单并行R接口(SPRINT)是一个R库,旨在通过为生物统计学家提供现有R函数的嵌入式并行替代来降低使用HPC系统的复杂性。在本文中,我们描述了在SPRINT库中实现随机森林分类器的并行版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信