Real-time hand tracking using integrated optical flow and CAMshift algorithm

Utkarsh Soni, Aditya Trivedi, Nirmal Roberts
{"title":"Real-time hand tracking using integrated optical flow and CAMshift algorithm","authors":"Utkarsh Soni, Aditya Trivedi, Nirmal Roberts","doi":"10.1109/ICRCICN.2016.7813645","DOIUrl":null,"url":null,"abstract":"Hand gesture interfaces are more convenient, natural, intuitive, and user-friendly form of input for HumanComputer Interaction(HCI). Hand detection and tracking are the most vital stages for any kind of hand gesture based interface and the accuracy of the final gesture recognition algorithm depends substantially on the proper and correct segmentation of hand from incoming video frames in real time. This paper proposes a novel hand tracking algorithm, that combines Continuous Adaptive Mean Shift Algorithm(CAMshift), Shi-Tomasi points, and Lukas Kanade Optical flow to track hand with high accuracy in real time using only a single camera in non-limiting and unrestrained environment. Results obtained reflect that the algorithm can precisely track the hand of an operator in an input video sequence obtained from a web-cam at 30fps.","PeriodicalId":254393,"journal":{"name":"2016 Second International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Second International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRCICN.2016.7813645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Hand gesture interfaces are more convenient, natural, intuitive, and user-friendly form of input for HumanComputer Interaction(HCI). Hand detection and tracking are the most vital stages for any kind of hand gesture based interface and the accuracy of the final gesture recognition algorithm depends substantially on the proper and correct segmentation of hand from incoming video frames in real time. This paper proposes a novel hand tracking algorithm, that combines Continuous Adaptive Mean Shift Algorithm(CAMshift), Shi-Tomasi points, and Lukas Kanade Optical flow to track hand with high accuracy in real time using only a single camera in non-limiting and unrestrained environment. Results obtained reflect that the algorithm can precisely track the hand of an operator in an input video sequence obtained from a web-cam at 30fps.
采用集成光流和CAMshift算法的实时手部跟踪
手势界面是人机交互(HCI)中更为方便、自然、直观和用户友好的输入形式。对于任何基于手势的界面,手部检测和跟踪都是最重要的阶段,最终手势识别算法的准确性很大程度上取决于实时从传入视频帧中正确分割手部。本文提出了一种新的手部跟踪算法,将连续自适应均值移位算法(CAMshift)、Shi-Tomasi点和Lukas Kanade光流相结合,在无限制、不受约束的环境下,利用单台摄像机实时高精度地跟踪手部。实验结果表明,该算法能够在30fps的网络摄像头输入视频序列中精确跟踪操作者的手部动作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信