Mining local process models

Niek Tax , Natalia Sidorova , Reinder Haakma , Wil M.P. van der Aalst
{"title":"Mining local process models","authors":"Niek Tax ,&nbsp;Natalia Sidorova ,&nbsp;Reinder Haakma ,&nbsp;Wil M.P. van der Aalst","doi":"10.1016/j.jides.2016.11.001","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we describe a method to discover frequent behavioral patterns in event logs. We express these patterns as <em>local process models</em>. Local process model mining can be positioned in-between process discovery and episode/sequential pattern mining. The technique presented in this paper is able to learn behavioral patterns involving sequential composition, concurrency, choice and loop, like in process mining. However, we do not look at start-to-end models, which distinguishes our approach from process discovery and creates a link to episode/sequential pattern mining. We propose an incremental procedure for building local process models capturing frequent patterns based on so-called process trees. We propose five quality dimensions and corresponding metrics for local process models, given an event log. We show monotonicity properties for some quality dimensions, enabling a speedup of local process model discovery through pruning. We demonstrate through a real life case study that mining local patterns allows us to get insights in processes where regular start-to-end process discovery techniques are only able to learn unstructured, flower-like, models.</p></div>","PeriodicalId":100792,"journal":{"name":"Journal of Innovation in Digital Ecosystems","volume":"3 2","pages":"Pages 183-196"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jides.2016.11.001","citationCount":"98","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Innovation in Digital Ecosystems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352664516300232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 98

Abstract

In this paper we describe a method to discover frequent behavioral patterns in event logs. We express these patterns as local process models. Local process model mining can be positioned in-between process discovery and episode/sequential pattern mining. The technique presented in this paper is able to learn behavioral patterns involving sequential composition, concurrency, choice and loop, like in process mining. However, we do not look at start-to-end models, which distinguishes our approach from process discovery and creates a link to episode/sequential pattern mining. We propose an incremental procedure for building local process models capturing frequent patterns based on so-called process trees. We propose five quality dimensions and corresponding metrics for local process models, given an event log. We show monotonicity properties for some quality dimensions, enabling a speedup of local process model discovery through pruning. We demonstrate through a real life case study that mining local patterns allows us to get insights in processes where regular start-to-end process discovery techniques are only able to learn unstructured, flower-like, models.

挖掘本地流程模型
本文描述了一种在事件日志中发现频繁行为模式的方法。我们将这些模式表示为本地流程模型。本地流程模型挖掘可以定位在流程发现和事件/顺序模式挖掘之间。本文提出的技术能够像过程挖掘一样学习涉及顺序组合、并发、选择和循环的行为模式。然而,我们没有考虑从开始到结束的模型,这将我们的方法与过程发现区分开来,并创建了到事件/顺序模式挖掘的链接。我们提出了一个增量过程,用于构建基于所谓的过程树的捕获频繁模式的本地过程模型。在给定事件日志的情况下,我们为本地流程模型提出了五个质量维度和相应的度量。我们展示了一些质量维度的单调性,通过剪枝加速了局部过程模型的发现。我们通过一个真实的案例研究证明,挖掘本地模式使我们能够深入了解流程,而常规的从开始到结束的流程发现技术只能学习非结构化的、类似花朵的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信