From Memory in our Brain to Emerging Resistive Memories in Neuromorphic Systems

B. Desalvo, E. Vianello, D. Garbin, O. Bichler, L. Perniola
{"title":"From Memory in our Brain to Emerging Resistive Memories in Neuromorphic Systems","authors":"B. Desalvo, E. Vianello, D. Garbin, O. Bichler, L. Perniola","doi":"10.1109/IMW.2015.7150286","DOIUrl":null,"url":null,"abstract":"In this work, we will focus on the role that new nonvolatile resistive memory technologies (as OxRAM and CBRAM) can play in emerging fields of application, such as neuromorphic circuits, to save energy and increase performance. We will present large-scale energy efficient neuromorphic systems based on ReRAM as stochastic-binary synapses. Prototype applications such as complex visual- and auditory-pattern extraction will be discussed using feedforward spiking neural networks. A parallel will be drawn between these systems and human memory, as recent discoveries on the human brain and cognitive processes may bring benefits and open new perspectives for intelligent data processing.","PeriodicalId":107437,"journal":{"name":"2015 IEEE International Memory Workshop (IMW)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Memory Workshop (IMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMW.2015.7150286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this work, we will focus on the role that new nonvolatile resistive memory technologies (as OxRAM and CBRAM) can play in emerging fields of application, such as neuromorphic circuits, to save energy and increase performance. We will present large-scale energy efficient neuromorphic systems based on ReRAM as stochastic-binary synapses. Prototype applications such as complex visual- and auditory-pattern extraction will be discussed using feedforward spiking neural networks. A parallel will be drawn between these systems and human memory, as recent discoveries on the human brain and cognitive processes may bring benefits and open new perspectives for intelligent data processing.
从我们大脑中的记忆到神经形态系统中出现的抵抗记忆
在这项工作中,我们将重点关注新的非易失性电阻式存储技术(如OxRAM和CBRAM)在新兴应用领域(如神经形态电路)中的作用,以节省能源和提高性能。我们将提出基于ReRAM的大规模能量高效神经形态系统作为随机二元突触。原型应用,如复杂的视觉和听觉模式提取将讨论使用前馈脉冲神经网络。这些系统和人类记忆之间的平行关系将被绘制出来,因为最近关于人类大脑和认知过程的发现可能会带来好处,并为智能数据处理开辟新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信