Threshold based similarity clustering of medical data

Sweta C. Morajkar, J. Laxminarayana
{"title":"Threshold based similarity clustering of medical data","authors":"Sweta C. Morajkar, J. Laxminarayana","doi":"10.1109/ICACCCT.2014.7019155","DOIUrl":null,"url":null,"abstract":"Due to increase in number of technologies, a large amount of data gets accumulated. The need arises to handle this data for retrieving and analyzing useful information. Clustering of temporal data has been explored using evolutionary clustering. However the time dimension associated with the record has not been considered. Traditional clustering algorithms usually focus on grouping data objects based on similarity function. Temporal data clustering extends traditional clustering mechanisms and provides underpinning solutions for discovering the evolving information over the period of time. This paper proposes a methodology for clustering medical observations of patients based on a new similarity measure. We show how to accelerate the clustering algorithm by avoiding unnecessary distance calculations by applying such similarity measure.","PeriodicalId":239918,"journal":{"name":"2014 IEEE International Conference on Advanced Communications, Control and Computing Technologies","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Advanced Communications, Control and Computing Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACCCT.2014.7019155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Due to increase in number of technologies, a large amount of data gets accumulated. The need arises to handle this data for retrieving and analyzing useful information. Clustering of temporal data has been explored using evolutionary clustering. However the time dimension associated with the record has not been considered. Traditional clustering algorithms usually focus on grouping data objects based on similarity function. Temporal data clustering extends traditional clustering mechanisms and provides underpinning solutions for discovering the evolving information over the period of time. This paper proposes a methodology for clustering medical observations of patients based on a new similarity measure. We show how to accelerate the clustering algorithm by avoiding unnecessary distance calculations by applying such similarity measure.
基于阈值的医疗数据相似性聚类
由于技术的增多,积累了大量的数据。需要处理这些数据以检索和分析有用的信息。时间数据的聚类已经使用进化聚类进行了探索。但是,没有考虑与记录相关的时间维度。传统的聚类算法通常侧重于基于相似函数对数据对象进行分组。时态数据聚类扩展了传统的聚类机制,并为发现一段时间内不断变化的信息提供了基础解决方案。本文提出了一种基于新的相似度度量的患者医学观察聚类方法。我们展示了如何通过应用这种相似性度量来避免不必要的距离计算来加速聚类算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信