Classification and Detection of Epilepsy using Reduced Set of Extracted Features

Hemant Choubey, Alpana Pandey
{"title":"Classification and Detection of Epilepsy using Reduced Set of Extracted Features","authors":"Hemant Choubey, Alpana Pandey","doi":"10.1109/SPIN.2018.8474100","DOIUrl":null,"url":null,"abstract":"The Electroencephalogram (EEG) signal is the non-invasive technique to examine the electrical activity of the brain and epilepsy is the chronological disorder or abnormality symptoms obtained from EEG data. The detection of this abnormality requires large number of features for the classification of healthy, inter-ictal and ictal signal from the EEG signal. Epileptic seizure detection using reduced set of features is the main idea behind in this paper. Expected Activity Measurement coefficient and Hurst Exponent with Higuchi Fractal Dimension is the small set of features sufficient for the detection of epileptic seizure from EEG signal using k-NN classifier with performance parameter like Accuracy, Precision and Jaccard Coefficient.","PeriodicalId":184596,"journal":{"name":"2018 5th International Conference on Signal Processing and Integrated Networks (SPIN)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 5th International Conference on Signal Processing and Integrated Networks (SPIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPIN.2018.8474100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The Electroencephalogram (EEG) signal is the non-invasive technique to examine the electrical activity of the brain and epilepsy is the chronological disorder or abnormality symptoms obtained from EEG data. The detection of this abnormality requires large number of features for the classification of healthy, inter-ictal and ictal signal from the EEG signal. Epileptic seizure detection using reduced set of features is the main idea behind in this paper. Expected Activity Measurement coefficient and Hurst Exponent with Higuchi Fractal Dimension is the small set of features sufficient for the detection of epileptic seizure from EEG signal using k-NN classifier with performance parameter like Accuracy, Precision and Jaccard Coefficient.
基于特征提取约简集的癫痫分类与检测
脑电图(EEG)信号是一种检查大脑电活动的非侵入性技术,癫痫是从脑电图数据中获得的时间紊乱或异常症状。这种异常的检测需要大量的特征来从脑电图信号中对健康信号、间隔信号和间隔信号进行分类。本文的主要思想是利用约简特征集进行癫痫发作检测。期望活动测量系数和具有Higuchi分形维数的Hurst指数是使用具有Accuracy、Precision和Jaccard系数等性能参数的k-NN分类器从脑电图信号中检测癫痫发作的小特征集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信