Tracking articulated hand motion with eigen dynamics analysis

Hanning Zhou, Thomas S. Huang
{"title":"Tracking articulated hand motion with eigen dynamics analysis","authors":"Hanning Zhou, Thomas S. Huang","doi":"10.1109/ICCV.2003.1238472","DOIUrl":null,"url":null,"abstract":"This paper introduces the concept of eigen-dynamics and proposes an eigen dynamics analysis (EDA) method to learn the dynamics of natural hand motion from labelled sets of motion captured with a data glove. The result is parameterized with a high-order stochastic linear dynamic system (LDS) consisting of five lower-order LDS. Each corresponding to one eigen-dynamics. Based on the EDA model, we construct a dynamic Bayesian network (DBN) to analyze the generative process of a image sequence of natural hand motion. Using the DBN, a hand tracking system is implemented. Experiments on both synthesized and real-world data demonstrate the robustness and effectiveness of these techniques.","PeriodicalId":131580,"journal":{"name":"Proceedings Ninth IEEE International Conference on Computer Vision","volume":"185 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"123","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Ninth IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2003.1238472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 123

Abstract

This paper introduces the concept of eigen-dynamics and proposes an eigen dynamics analysis (EDA) method to learn the dynamics of natural hand motion from labelled sets of motion captured with a data glove. The result is parameterized with a high-order stochastic linear dynamic system (LDS) consisting of five lower-order LDS. Each corresponding to one eigen-dynamics. Based on the EDA model, we construct a dynamic Bayesian network (DBN) to analyze the generative process of a image sequence of natural hand motion. Using the DBN, a hand tracking system is implemented. Experiments on both synthesized and real-world data demonstrate the robustness and effectiveness of these techniques.
基于特征动力学分析的关节手运动跟踪
介绍了特征动力学的概念,提出了一种特征动力学分析(EDA)方法,从数据手套捕获的标记运动集中学习手部自然运动的动力学。结果用一个由5个低阶随机线性动力系统组成的高阶随机线性动力系统(LDS)参数化。每个对应一个本征动力学。在EDA模型的基础上,构建了一个动态贝叶斯网络(DBN)来分析手部自然运动图像序列的生成过程。利用DBN,实现了一个手部跟踪系统。在合成数据和实际数据上的实验证明了这些技术的鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信