Fall body detection algorithm based on tri-accelerometer sensors

P. Salgado, P. Afonso
{"title":"Fall body detection algorithm based on tri-accelerometer sensors","authors":"P. Salgado, P. Afonso","doi":"10.1109/CINTI.2013.6705221","DOIUrl":null,"url":null,"abstract":"In this paper a fall body detection system for a smartphone device is proposed. Its embedded tri-accelerometer sensor was utilized to collect the information about the body motion used by a real-time Pose Body Model (PBM) identified by an Extended Kalman filter algorithm. The PBM supply an estimate about the vertical pose angle value and a neural network is used to detect body fall incidents. Moreover, an automatic Multimedia Messaging Service (MMS) will be sent to a central of vigilant where additional information including the time and the GPS coordinates, reports the suspected fall location.","PeriodicalId":439949,"journal":{"name":"2013 IEEE 14th International Symposium on Computational Intelligence and Informatics (CINTI)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 14th International Symposium on Computational Intelligence and Informatics (CINTI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINTI.2013.6705221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper a fall body detection system for a smartphone device is proposed. Its embedded tri-accelerometer sensor was utilized to collect the information about the body motion used by a real-time Pose Body Model (PBM) identified by an Extended Kalman filter algorithm. The PBM supply an estimate about the vertical pose angle value and a neural network is used to detect body fall incidents. Moreover, an automatic Multimedia Messaging Service (MMS) will be sent to a central of vigilant where additional information including the time and the GPS coordinates, reports the suspected fall location.
基于三加速度传感器的跌倒体检测算法
本文提出了一种适用于智能手机的跌倒检测系统。利用嵌入式三加速度传感器采集人体运动信息,利用扩展卡尔曼滤波算法建立实时姿态身体模型(PBM)。PBM提供了垂直位姿角值的估计,并使用神经网络检测身体坠落事件。此外,自动多媒体信息服务(MMS)将发送到警戒中心,在那里包括时间和GPS坐标在内的附加信息将报告疑似坠落的位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信