Automated measurement and segmentation of abdominal adipose tissue in MRI

D. Sussman, Jianhua Yao, R. Summers
{"title":"Automated measurement and segmentation of abdominal adipose tissue in MRI","authors":"D. Sussman, Jianhua Yao, R. Summers","doi":"10.1109/ISBI.2010.5490141","DOIUrl":null,"url":null,"abstract":"Obesity has become widespread in America and has been identified as a risk factor for many illnesses. Measuring adipose tissue (AT) with traditional means is often unreliable and inaccurate. MRI provides a safe and minimally invasive means to measure AT accurately and segment visceral AT from subcutaneous AT. However, MRI is often corrupted by image artifacts which make manual measurements difficult and time consuming. We present a fully automated method to measure and segment abdominal AT in MRI. Our method uses non-parametric non-uniform intensity normalization (N3) to correct for image artifacts and inhomogeneities, fuzzy c-means to cluster AT regions and active contour models to separate subcutaneous and visceral AT. Our method was able to measure images with severe intensity inhomogeneities and demonstrated agreement with two manual users that was close to the agreement between the manual users.","PeriodicalId":250523,"journal":{"name":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2010.5490141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Obesity has become widespread in America and has been identified as a risk factor for many illnesses. Measuring adipose tissue (AT) with traditional means is often unreliable and inaccurate. MRI provides a safe and minimally invasive means to measure AT accurately and segment visceral AT from subcutaneous AT. However, MRI is often corrupted by image artifacts which make manual measurements difficult and time consuming. We present a fully automated method to measure and segment abdominal AT in MRI. Our method uses non-parametric non-uniform intensity normalization (N3) to correct for image artifacts and inhomogeneities, fuzzy c-means to cluster AT regions and active contour models to separate subcutaneous and visceral AT. Our method was able to measure images with severe intensity inhomogeneities and demonstrated agreement with two manual users that was close to the agreement between the manual users.
MRI中腹部脂肪组织的自动测量和分割
肥胖在美国已经很普遍,并被认为是许多疾病的风险因素。用传统方法测量脂肪组织(AT)往往是不可靠和不准确的。MRI提供了安全、微创的方法来准确测量AT,并从皮下AT中分割内脏AT。然而,MRI经常被图像伪影破坏,这使得人工测量困难且耗时。我们提出了一种在MRI中测量和分割腹部AT的全自动方法。我们的方法使用非参数非均匀强度归一化(N3)来校正图像伪影和不均匀性,使用模糊c均值来聚类AT区域,使用活动轮廓模型来分离皮下和内脏AT。我们的方法能够测量具有严重强度不均匀性的图像,并证明与两个手动用户的协议接近于手动用户之间的协议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信