Development of Small-Scale Axial Turbine for solar powered Brayton Cycle

Ahmed M. Daabo, S. Mahmoud, R. AL-Dadah
{"title":"Development of Small-Scale Axial Turbine for solar powered Brayton Cycle","authors":"Ahmed M. Daabo, S. Mahmoud, R. AL-Dadah","doi":"10.1109/ICSAE.2016.7810182","DOIUrl":null,"url":null,"abstract":"An efficient small scale turbine, which can operate at low mass flowrates, relatively low pressure ratios and moderately high temperatures, is needed for developing a Small Scale Brayton Cycle SSBC to generate power for domestic applications. Although research work was carried out to develop Brayton cycle however the effect of turbine design on the cycle efficiency was not considered. This work aims to develop a Small Scale Axial Turbine (SSAT) using 3D CFD simulations. Different design and operating conditions, for both turbine and cycle were investigated to identify the most efficient turbine for this application. Results showed that a turbine with rotor stagger angel of 30°, and rotor flow angel of -51.5°, pressure ratio of 3, and rotational speed of 17500rpm, a turbine efficiency of 83.89% and power output of 5.25 kW and cycle overall thermal efficiency 9.1%.","PeriodicalId":214121,"journal":{"name":"2016 International Conference for Students on Applied Engineering (ICSAE)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference for Students on Applied Engineering (ICSAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAE.2016.7810182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

An efficient small scale turbine, which can operate at low mass flowrates, relatively low pressure ratios and moderately high temperatures, is needed for developing a Small Scale Brayton Cycle SSBC to generate power for domestic applications. Although research work was carried out to develop Brayton cycle however the effect of turbine design on the cycle efficiency was not considered. This work aims to develop a Small Scale Axial Turbine (SSAT) using 3D CFD simulations. Different design and operating conditions, for both turbine and cycle were investigated to identify the most efficient turbine for this application. Results showed that a turbine with rotor stagger angel of 30°, and rotor flow angel of -51.5°, pressure ratio of 3, and rotational speed of 17500rpm, a turbine efficiency of 83.89% and power output of 5.25 kW and cycle overall thermal efficiency 9.1%.
小型太阳能布雷顿循环轴向水轮机的研制
小型布雷顿循环SSBC需要一种高效的小型涡轮机,它可以在低质量流量,相对较低的压力比和中等高温下运行,以产生国内应用的电力。虽然进行了开发布雷顿循环的研究工作,但没有考虑涡轮设计对循环效率的影响。本工作旨在利用三维CFD模拟开发小型轴向涡轮。研究了不同的设计和操作条件,对涡轮机和循环进行了研究,以确定最有效的涡轮机。结果表明,当转子错开角为30°,转子流动角为-51.5°,压比为3,转速为17500rpm时,涡轮效率为83.89%,输出功率为5.25 kW,循环总热效率为9.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信