Multi codebook LVQ-based artificial neural network using clustering approach

M. Anwar Ma'sum, H. Sanabila, W. Jatmiko, Aprinaldi
{"title":"Multi codebook LVQ-based artificial neural network using clustering approach","authors":"M. Anwar Ma'sum, H. Sanabila, W. Jatmiko, Aprinaldi","doi":"10.1109/ICACSIS.2015.7415193","DOIUrl":null,"url":null,"abstract":"In this paper we proposed multicodebook LVQ-based artificial neural network classifier using clustering approach. The classifiers are LVQ, LVQ2-1, GLVQ, and FNGLVQ. The clustering algorithm used to build multi codebook is K-Means, IK-Means, and GMM. Experiment result shows that on synthteic dataset multi codebook FNGLVQ using GMM clustering has higest improvement with 19,53% mprovement compared to FNGLVQ. Whereas on bencmark dataset multi codebook LVQ2-1 using K-Means clustering has higest improvement with 5,83% improvement cmpared to LVQ-2.1.","PeriodicalId":325539,"journal":{"name":"2015 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACSIS.2015.7415193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper we proposed multicodebook LVQ-based artificial neural network classifier using clustering approach. The classifiers are LVQ, LVQ2-1, GLVQ, and FNGLVQ. The clustering algorithm used to build multi codebook is K-Means, IK-Means, and GMM. Experiment result shows that on synthteic dataset multi codebook FNGLVQ using GMM clustering has higest improvement with 19,53% mprovement compared to FNGLVQ. Whereas on bencmark dataset multi codebook LVQ2-1 using K-Means clustering has higest improvement with 5,83% improvement cmpared to LVQ-2.1.
基于多码本lvq的聚类人工神经网络
本文采用聚类方法提出了基于多码本lvq的人工神经网络分类器。分类器是LVQ、LVQ2-1、GLVQ和FNGLVQ。构建多码本的聚类算法有K-Means、IK-Means和GMM。实验结果表明,在多码本的合成数据集上,采用GMM聚类的FNGLVQ比FNGLVQ有最高的改进,提高了19.53%。而在基准数据集上,使用K-Means聚类的多码本LVQ2-1与LVQ-2.1相比,具有最高的改进,提高了5.83%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信