Multi-Structural Games and Number of Quantifiers

Ronald Fagin, J. Lenchner, Kenneth W. Regan, Nikhil Vyas
{"title":"Multi-Structural Games and Number of Quantifiers","authors":"Ronald Fagin, J. Lenchner, Kenneth W. Regan, Nikhil Vyas","doi":"10.1109/LICS52264.2021.9470756","DOIUrl":null,"url":null,"abstract":"We study multi-structural games, played on two sets ${\\mathcal{A}}$ and ${\\mathcal{B}}$ of structures. These games generalize Ehrenfeucht-Fraïssé games. Whereas Ehrenfeucht-Fraïssé games capture the quantifier rank of a first-order sentence, multi-structural games capture the number of quantifiers, in the sense that Spoiler wins the r-round game if and only if there is a first-order sentence ϕ with at most r quantifiers, where every structure in ${\\mathcal{A}}$ satisfies ϕ and no structure in ${\\mathcal{B}}$ satisfies ϕ. We use these games to give a complete characterization of the number of quantifiers required to distinguish linear orders of different sizes, and develop machinery for analyzing structures beyond linear orders.","PeriodicalId":174663,"journal":{"name":"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS52264.2021.9470756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We study multi-structural games, played on two sets ${\mathcal{A}}$ and ${\mathcal{B}}$ of structures. These games generalize Ehrenfeucht-Fraïssé games. Whereas Ehrenfeucht-Fraïssé games capture the quantifier rank of a first-order sentence, multi-structural games capture the number of quantifiers, in the sense that Spoiler wins the r-round game if and only if there is a first-order sentence ϕ with at most r quantifiers, where every structure in ${\mathcal{A}}$ satisfies ϕ and no structure in ${\mathcal{B}}$ satisfies ϕ. We use these games to give a complete characterization of the number of quantifiers required to distinguish linear orders of different sizes, and develop machinery for analyzing structures beyond linear orders.
多结构博弈与量词数量
我们研究多结构博弈,在两个结构集${\mathcal{A}}$和${\mathcal{B}}$上博弈。这些游戏概括了Ehrenfeucht-Fraïssé游戏。Ehrenfeucht-Fraïssé游戏捕捉一阶句子的量词等级,而多结构游戏捕捉量词的数量,也就是说,当且仅当一阶句子的φ最多包含r个量词,其中${\mathcal{a}}$中的每个结构都满足φ,而${\mathcal{B}}$中没有结构满足φ时,Spoiler才会赢得r轮游戏。我们使用这些游戏给出了区分不同大小的线性顺序所需的量词数量的完整特征,并开发了分析线性顺序之外的结构的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信