Generation of rejection method bounds for spherically invariant random vectors

A. D. Keckler, D. Weiner
{"title":"Generation of rejection method bounds for spherically invariant random vectors","authors":"A. D. Keckler, D. Weiner","doi":"10.1109/NRC.2002.999690","DOIUrl":null,"url":null,"abstract":"Based upon the central limit theorem, random clutter returns are commonly modeled as Gaussian. Nevertheless, many situations arise in practice where the data are clearly non-Gaussian, as is seen with \"spiky\" radar clutter. Spherically invariant random vectors (SIRVs) are especially attractive for modeling correlated non-Gaussian clutter. This paper discusses the computer simulation of SIRVs for Monte Carlo purposes using the rejection method. A key requirement of the rejection method is the ability to find a tight bound of the probability density function, from which random samples can be readily generated. An automated technique for generating this bound for the SIRV probability density function is presented.","PeriodicalId":448055,"journal":{"name":"Proceedings of the 2002 IEEE Radar Conference (IEEE Cat. No.02CH37322)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 IEEE Radar Conference (IEEE Cat. No.02CH37322)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRC.2002.999690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Based upon the central limit theorem, random clutter returns are commonly modeled as Gaussian. Nevertheless, many situations arise in practice where the data are clearly non-Gaussian, as is seen with "spiky" radar clutter. Spherically invariant random vectors (SIRVs) are especially attractive for modeling correlated non-Gaussian clutter. This paper discusses the computer simulation of SIRVs for Monte Carlo purposes using the rejection method. A key requirement of the rejection method is the ability to find a tight bound of the probability density function, from which random samples can be readily generated. An automated technique for generating this bound for the SIRV probability density function is presented.
球不变随机向量抑制方法界的生成
基于中心极限定理,随机杂波返回通常被建模为高斯。然而,在实践中出现了许多情况,其中数据明显是非高斯的,正如“尖”雷达杂波所看到的那样。球不变随机向量(sirv)对于相关非高斯杂波的建模特别有吸引力。本文讨论了基于蒙特卡罗方法的siv的计算机模拟。拒绝方法的一个关键要求是能够找到概率密度函数的紧密边界,从中可以很容易地生成随机样本。提出了一种自动生成SIRV概率密度函数界的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信