Determining the Number of Effective Parameters in Kernel Density Estimation

N. McCloud, Christopher F. Parmeter
{"title":"Determining the Number of Effective Parameters in Kernel Density Estimation","authors":"N. McCloud, Christopher F. Parmeter","doi":"10.2139/ssrn.3812831","DOIUrl":null,"url":null,"abstract":"The hat matrix maps the vector of response values in a regression to its predicted counterpart. The trace of this hat matrix is the workhorse for calculating the effective number of parameters in both parametric and nonparametric regression settings. Drawing on the regression literature, the standard kernel density estimate is transformed to mimic a regression estimate thus allowing extraction of a usable hat matrix for calculating the effective number of parameters of the kernel density estimate. Asymptotic expressions for the trace of this hat matrix are derived under standard regularity conditions for mixed, continuous, and discrete densities. Simulations validate the theoretical contributions. Several empirical examples demonstrate the usefulness of the method suggesting that calculating the effective number of parameters of a kernel density estimator maybe useful in interpreting differences across estimators.","PeriodicalId":161214,"journal":{"name":"DecisionSciRN: Decision-Making in Mathematics (Topic)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DecisionSciRN: Decision-Making in Mathematics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3812831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The hat matrix maps the vector of response values in a regression to its predicted counterpart. The trace of this hat matrix is the workhorse for calculating the effective number of parameters in both parametric and nonparametric regression settings. Drawing on the regression literature, the standard kernel density estimate is transformed to mimic a regression estimate thus allowing extraction of a usable hat matrix for calculating the effective number of parameters of the kernel density estimate. Asymptotic expressions for the trace of this hat matrix are derived under standard regularity conditions for mixed, continuous, and discrete densities. Simulations validate the theoretical contributions. Several empirical examples demonstrate the usefulness of the method suggesting that calculating the effective number of parameters of a kernel density estimator maybe useful in interpreting differences across estimators.
核密度估计中有效参数数目的确定
帽矩阵将回归中的响应值向量映射到其预测的对应向量。该矩阵的轨迹是在参数和非参数回归设置中计算有效参数数的主要方法。根据回归文献,将标准核密度估计转换为模拟回归估计,从而允许提取可用的帽矩阵来计算核密度估计的有效参数数。在混合密度、连续密度和离散密度的标准正则条件下,导出了该矩阵迹的渐近表达式。仿真验证了理论贡献。几个经验例子证明了该方法的有效性,表明计算核密度估计器的有效参数数可能有助于解释估计器之间的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信