A Physical and Virtual Compute Cluster Resource Load Balancing Approach to Data-Parallel Scientific Workflow Scheduling

Jianwu Wang, P. Korambath, I. Altintas
{"title":"A Physical and Virtual Compute Cluster Resource Load Balancing Approach to Data-Parallel Scientific Workflow Scheduling","authors":"Jianwu Wang, P. Korambath, I. Altintas","doi":"10.1109/SERVICES.2011.50","DOIUrl":null,"url":null,"abstract":"To execute workflows on a compute cluster resource, workflow engines can work with cluster resource manager software to distribute jobs into compute nodes on the cluster. We discuss how to interact with traditional Oracle Grid Engine and recent Hadoop cluster resource managers using a dataflow-based scheduling approach to balance compute resource load for data-parallel workflow execution. Our experiments show that: 1) The presented approach can balance computational resource load well by interacting with the resource managers and provides good execution performance on both physical and virtual clusters, 2) Oracle Grid Engine outperforms Hadoop for CPU-intensive applications on small-scale clusters.","PeriodicalId":429726,"journal":{"name":"2011 IEEE World Congress on Services","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE World Congress on Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SERVICES.2011.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

To execute workflows on a compute cluster resource, workflow engines can work with cluster resource manager software to distribute jobs into compute nodes on the cluster. We discuss how to interact with traditional Oracle Grid Engine and recent Hadoop cluster resource managers using a dataflow-based scheduling approach to balance compute resource load for data-parallel workflow execution. Our experiments show that: 1) The presented approach can balance computational resource load well by interacting with the resource managers and provides good execution performance on both physical and virtual clusters, 2) Oracle Grid Engine outperforms Hadoop for CPU-intensive applications on small-scale clusters.
数据并行科学工作流调度的物理和虚拟计算集群资源负载均衡方法
要在计算集群资源上执行工作流,工作流引擎可以与集群资源管理器软件一起工作,将作业分发到集群上的计算节点。我们讨论了如何使用基于数据流的调度方法与传统的Oracle Grid Engine和最近的Hadoop集群资源管理器进行交互,以平衡数据并行工作流执行的计算资源负载。实验结果表明:1)该方法通过与资源管理器的交互,可以很好地平衡计算资源负载,在物理集群和虚拟集群上都提供了良好的执行性能;2)Oracle Grid Engine在小规模集群上对于cpu密集型应用的性能优于Hadoop。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信