Self-Attention Prediction Correction with Channel Suppression for Weakly-Supervised Semantic Segmentation

Guoying Sun, Meng Yang
{"title":"Self-Attention Prediction Correction with Channel Suppression for Weakly-Supervised Semantic Segmentation","authors":"Guoying Sun, Meng Yang","doi":"10.1109/ICME55011.2023.00150","DOIUrl":null,"url":null,"abstract":"Single-stage weakly-supervised semantic segmentation (WSSS) with image-level labels has become a new research hotspot in the community for its lower cost and higher training efficiency. However, the pseudo label of WSSS generally suffers from somewhat noise, which limits the segmentation performance. In this paper, to explore the integral foreground activation, we propose the Channel Suppression (CS) module for preventing only activating the most discriminative regions, thereby improving the initial pseudo labels. To rectify the in-correct prediction, we explore the Self-Attention Prediction Correction (SAPC) module, which adaptively generates the category-wise prediction rectification weights. After extensive experiments, the proposed efficient single-stage framework achieves excellent performance with 67.6% mIoU and 39.9% mIoU on PASCAL VOC 2012 and MS COCO 2014 datasets, significantly exceeding several recent single-stage methods.","PeriodicalId":321830,"journal":{"name":"2023 IEEE International Conference on Multimedia and Expo (ICME)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME55011.2023.00150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Single-stage weakly-supervised semantic segmentation (WSSS) with image-level labels has become a new research hotspot in the community for its lower cost and higher training efficiency. However, the pseudo label of WSSS generally suffers from somewhat noise, which limits the segmentation performance. In this paper, to explore the integral foreground activation, we propose the Channel Suppression (CS) module for preventing only activating the most discriminative regions, thereby improving the initial pseudo labels. To rectify the in-correct prediction, we explore the Self-Attention Prediction Correction (SAPC) module, which adaptively generates the category-wise prediction rectification weights. After extensive experiments, the proposed efficient single-stage framework achieves excellent performance with 67.6% mIoU and 39.9% mIoU on PASCAL VOC 2012 and MS COCO 2014 datasets, significantly exceeding several recent single-stage methods.
基于信道抑制的弱监督语义分割自注意预测校正
基于图像级标签的单阶段弱监督语义分割(WSSS)以其较低的成本和较高的训练效率成为新的研究热点。然而,WSSS的伪标签通常存在一定的噪声,这限制了分割性能。在本文中,为了探索积分前景激活,我们提出了信道抑制(CS)模块,以防止只激活最具区别性的区域,从而改进初始伪标签。为了纠正不正确的预测,我们探索了自关注预测校正(SAPC)模块,该模块自适应地生成分类预测校正权值。经过大量的实验,所提出的高效单阶段框架在PASCAL VOC 2012和MS COCO 2014数据集上分别取得了67.6%和39.9%的mIoU,显著超过了最近的几种单阶段方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信