Hierarchical clustering of large volumetric datasets

Carl J. Granberg, Ling Li
{"title":"Hierarchical clustering of large volumetric datasets","authors":"Carl J. Granberg, Ling Li","doi":"10.1145/1101389.1101473","DOIUrl":null,"url":null,"abstract":"In this paper we propose a multiresolution hierarchical data structure called the Ordered Cluster Binary Tree (OCBT). The OCBT is a binary tree structure that extends a Cluster Binary Tree with spatial splitting similar to that of a k-D Tree. We also show how this tree can be improved to extract data efficiently at different sub volumes and levels of detail at run time. We also incorporate a bounding sphere hierarchy to enable early search termination. This clustering algorithm can be made out-of-core and thus enables datasets of several giga bytes in size.","PeriodicalId":286067,"journal":{"name":"Proceedings of the 3rd international conference on Computer graphics and interactive techniques in Australasia and South East Asia","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd international conference on Computer graphics and interactive techniques in Australasia and South East Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1101389.1101473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper we propose a multiresolution hierarchical data structure called the Ordered Cluster Binary Tree (OCBT). The OCBT is a binary tree structure that extends a Cluster Binary Tree with spatial splitting similar to that of a k-D Tree. We also show how this tree can be improved to extract data efficiently at different sub volumes and levels of detail at run time. We also incorporate a bounding sphere hierarchy to enable early search termination. This clustering algorithm can be made out-of-core and thus enables datasets of several giga bytes in size.
大容量数据集的分层聚类
本文提出了一种多分辨率分层数据结构,称为有序聚类二叉树(OCBT)。OCBT是一种二叉树结构,它扩展了集群二叉树,具有类似于k-D树的空间分裂。我们还展示了如何改进此树,以便在运行时在不同的子卷和详细级别上有效地提取数据。我们还合并了一个边界球层次结构,以支持早期搜索终止。这种聚类算法可以在核外进行,从而支持大小为几千兆字节的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信