Multi-scale Target Tracking Algorithm with Kalman Filter in Compression Sensing

Yichen Duan, Peng Wang, Xue Li, Dan Xu
{"title":"Multi-scale Target Tracking Algorithm with Kalman Filter in Compression Sensing","authors":"Yichen Duan, Peng Wang, Xue Li, Dan Xu","doi":"10.1109/ICCNEA.2017.30","DOIUrl":null,"url":null,"abstract":"Real-time Compressive Tracking (CT) uses the compression sensing theory to provide a new research direction for the target tracking field. The algorithm is simple, efficient and real-time. But there are still shortcomings: tracking results prone to drift phenomenon, cannot adapt to tracking the target scale changes. In order to solve these problems, this paper proposes to use the Kalman filter to generate the distance weights, and then use the weighted Bayesian classifier to correct the tracking position, and perform multi-scale template acquisition in the determined position to adapt to the changes of the target scale. Finally, introducing the adaptive learning rate while updating to improve the tracking effect.. Experiments show that the improved algorithm has better robustness than the original algorithm on the basis of maintaining the original algorithm real-time.","PeriodicalId":113898,"journal":{"name":"2017 International Conference on Computer Network, Electronic and Automation (ICCNEA)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Computer Network, Electronic and Automation (ICCNEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCNEA.2017.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Real-time Compressive Tracking (CT) uses the compression sensing theory to provide a new research direction for the target tracking field. The algorithm is simple, efficient and real-time. But there are still shortcomings: tracking results prone to drift phenomenon, cannot adapt to tracking the target scale changes. In order to solve these problems, this paper proposes to use the Kalman filter to generate the distance weights, and then use the weighted Bayesian classifier to correct the tracking position, and perform multi-scale template acquisition in the determined position to adapt to the changes of the target scale. Finally, introducing the adaptive learning rate while updating to improve the tracking effect.. Experiments show that the improved algorithm has better robustness than the original algorithm on the basis of maintaining the original algorithm real-time.
压缩感知中卡尔曼滤波的多尺度目标跟踪算法
实时压缩跟踪(CT)利用压缩感知理论为目标跟踪领域提供了新的研究方向。该算法简单、高效、实时性好。但仍存在不足之处:跟踪结果容易出现漂移现象,不能适应跟踪目标尺度的变化。为了解决这些问题,本文提出使用卡尔曼滤波生成距离权值,然后使用加权贝叶斯分类器对跟踪位置进行校正,并在确定的位置进行多尺度模板采集,以适应目标尺度的变化。最后,引入自适应学习率来提高跟踪效果。实验表明,改进算法在保持原算法实时性的基础上,比原算法具有更好的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信