An Improved Algorithm for Incremental DFS Tree in Undirected Graphs

Lijie Chen, Ran Duan, Ruosong Wang, Hanrui Zhang, Tianyi Zhang
{"title":"An Improved Algorithm for Incremental DFS Tree in Undirected Graphs","authors":"Lijie Chen, Ran Duan, Ruosong Wang, Hanrui Zhang, Tianyi Zhang","doi":"10.4230/LIPIcs.SWAT.2018.16","DOIUrl":null,"url":null,"abstract":"Depth first search (DFS) tree is one of the most well-known data structures for designing efficient graph algorithms. Given an undirected graph $G=(V,E)$ with $n$ vertices and $m$ edges, the textbook algorithm takes $O(n+m)$ time to construct a DFS tree. In this paper, we study the problem of maintaining a DFS tree when the graph is undergoing incremental updates. Formally, we show: Given an arbitrary online sequence of edge or vertex insertions, there is an algorithm that reports a DFS tree in $O(n)$ worst case time per operation, and requires $O\\left(\\min\\{m \\log n, n^2\\}\\right)$ preprocessing time. \nOur result improves the previous $O(n \\log^3 n)$ worst case update time algorithm by Baswana et al. and the $O(n \\log n)$ time by Nakamura and Sadakane, and matches the trivial $\\Omega(n)$ lower bound when it is required to explicitly output a DFS tree. \nOur result builds on the framework introduced in the breakthrough work by Baswana et al., together with a novel use of a tree-partition lemma by Duan and Zhan, and the celebrated fractional cascading technique by Chazelle and Guibas.","PeriodicalId":447445,"journal":{"name":"Scandinavian Workshop on Algorithm Theory","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Workshop on Algorithm Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.SWAT.2018.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Depth first search (DFS) tree is one of the most well-known data structures for designing efficient graph algorithms. Given an undirected graph $G=(V,E)$ with $n$ vertices and $m$ edges, the textbook algorithm takes $O(n+m)$ time to construct a DFS tree. In this paper, we study the problem of maintaining a DFS tree when the graph is undergoing incremental updates. Formally, we show: Given an arbitrary online sequence of edge or vertex insertions, there is an algorithm that reports a DFS tree in $O(n)$ worst case time per operation, and requires $O\left(\min\{m \log n, n^2\}\right)$ preprocessing time. Our result improves the previous $O(n \log^3 n)$ worst case update time algorithm by Baswana et al. and the $O(n \log n)$ time by Nakamura and Sadakane, and matches the trivial $\Omega(n)$ lower bound when it is required to explicitly output a DFS tree. Our result builds on the framework introduced in the breakthrough work by Baswana et al., together with a novel use of a tree-partition lemma by Duan and Zhan, and the celebrated fractional cascading technique by Chazelle and Guibas.
一种改进的无向图增量DFS树算法
深度优先搜索(DFS)树是设计高效图算法最常用的数据结构之一。给定一个具有$n$个顶点和$m$条边的无向图$G=(V,E)$,教科书算法需要$O(n+m)$时间来构建DFS树。本文研究了图进行增量更新时DFS树的维护问题。正式地,我们表明:给定任意的边或顶点插入在线序列,存在一种算法,该算法在每次操作的最坏情况下以$O(n)$时间报告DFS树,并且需要$O\left(\min\{m \log n, n^2\}\right)$预处理时间。我们的结果改进了先前Baswana等人的$O(n \log^3 n)$最坏情况更新时间算法和Nakamura和Sadakane的$O(n \log n)$时间算法,并且在需要显式输出DFS树时匹配平凡的$\Omega(n)$下界。我们的结果建立在Baswana等人的突破性工作中引入的框架,以及Duan和Zhan对树划分引理的新使用,以及Chazelle和gu著名的分数级联技术的基础上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信