A Hardware Accelerator for Edge Detection in High-Definition Video using Cellular Neural Networks

Ignacio Pérez, Wladimir E. Valenzuela, M. Figueroa
{"title":"A Hardware Accelerator for Edge Detection in High-Definition Video using Cellular Neural Networks","authors":"Ignacio Pérez, Wladimir E. Valenzuela, M. Figueroa","doi":"10.1109/DSD.2019.00017","DOIUrl":null,"url":null,"abstract":"This paper presents the architecture of a hardware accelerator for a cellular neural network (CeNN) with an application to real-time edge detection on visible-range and infrared video. The accelerator features fully-pipelined processing elements (PEs) that exploit the data parallelism in the algorithm to perform an iteration of the CeNN on a stream of video data with high throughput. The memory architecture exploits the locality of reference in the CeNN, so that each PE uses only 5 line buffers to store pixel, state, and output data, thus achieving low on-chip memory utilization. Implemented on a Xilinx XC7A200T FPGA running at 245MHz, the accelerator performs edge detection on 1080p video using a single CeNN iteration with a throughput of 118 frames per second (fps), a total latency of 15.7us, and 618mW of power consumption. The architecture features static reconfiguration to store built-in kernels and to add more PEs to support multiple iterations of the CeNN algorithm. More kernels can be added dynamically through a serial interface.","PeriodicalId":217233,"journal":{"name":"2019 22nd Euromicro Conference on Digital System Design (DSD)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 22nd Euromicro Conference on Digital System Design (DSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSD.2019.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the architecture of a hardware accelerator for a cellular neural network (CeNN) with an application to real-time edge detection on visible-range and infrared video. The accelerator features fully-pipelined processing elements (PEs) that exploit the data parallelism in the algorithm to perform an iteration of the CeNN on a stream of video data with high throughput. The memory architecture exploits the locality of reference in the CeNN, so that each PE uses only 5 line buffers to store pixel, state, and output data, thus achieving low on-chip memory utilization. Implemented on a Xilinx XC7A200T FPGA running at 245MHz, the accelerator performs edge detection on 1080p video using a single CeNN iteration with a throughput of 118 frames per second (fps), a total latency of 15.7us, and 618mW of power consumption. The architecture features static reconfiguration to store built-in kernels and to add more PEs to support multiple iterations of the CeNN algorithm. More kernels can be added dynamically through a serial interface.
基于细胞神经网络的高清视频边缘检测硬件加速器
本文介绍了一种用于细胞神经网络(CeNN)的硬件加速器的结构,并将其应用于可见光和红外视频的实时边缘检测。加速器的特点是全流水线处理元素(pe),利用算法中的数据并行性,在高吞吐量的视频数据流上执行CeNN的迭代。内存架构利用了CeNN中引用的局部性,因此每个PE只使用5个行缓冲区来存储像素、状态和输出数据,从而实现了低片上内存利用率。该加速器在Xilinx XC7A200T FPGA上实现,运行频率为245MHz,使用单个CeNN迭代对1080p视频进行边缘检测,吞吐量为每秒118帧(fps),总延迟为15.7us,功耗为618mW。该体系结构的特点是静态重新配置以存储内置内核,并添加更多pe以支持CeNN算法的多次迭代。可以通过串行接口动态添加更多的内核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信