Use Educational Data Mining to Predict Undergraduate Retention

Steven Lehr, Hong Liu, Sean Kinglesmith, Alexander L. Konyha, Natalia Robaszewska, Jacob Medinilla
{"title":"Use Educational Data Mining to Predict Undergraduate Retention","authors":"Steven Lehr, Hong Liu, Sean Kinglesmith, Alexander L. Konyha, Natalia Robaszewska, Jacob Medinilla","doi":"10.1109/ICALT.2016.138","DOIUrl":null,"url":null,"abstract":"This paper presents an application of educational data mining to predict undergraduate retention. The research provides valuable insight about data feature ranking, algorithm selections and validation methods based on unique types of data that come from educational settings. The data from a cohort of 972 students enrolled in 2008 at Embry-Riddle Aeronautical University (ERAU) were used to train and validate the predictive models. This research aims to provide decision recommendations to ERAU and similar institutions to make the timely intervention for improving retention.","PeriodicalId":188900,"journal":{"name":"2016 IEEE 16th International Conference on Advanced Learning Technologies (ICALT)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 16th International Conference on Advanced Learning Technologies (ICALT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICALT.2016.138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This paper presents an application of educational data mining to predict undergraduate retention. The research provides valuable insight about data feature ranking, algorithm selections and validation methods based on unique types of data that come from educational settings. The data from a cohort of 972 students enrolled in 2008 at Embry-Riddle Aeronautical University (ERAU) were used to train and validate the predictive models. This research aims to provide decision recommendations to ERAU and similar institutions to make the timely intervention for improving retention.
利用教育数据挖掘预测本科生留校率
本文介绍了教育数据挖掘在预测本科生留校率中的应用。该研究提供了关于数据特征排序、算法选择和基于来自教育设置的独特类型数据的验证方法的有价值的见解。来自安柏瑞德航空大学(ERAU) 2008年入学的972名学生的数据被用来训练和验证预测模型。本研究旨在为ERAU及类似机构提供决策建议,以便及时干预以提高留用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信