Transit Price Negotiation: Decentralized Learning of Optimal Strategies with Incomplete Information

D. Barth, L. Echabbi, C. Hamlaoui
{"title":"Transit Price Negotiation: Decentralized Learning of Optimal Strategies with Incomplete Information","authors":"D. Barth, L. Echabbi, C. Hamlaoui","doi":"10.1109/NGI.2008.10","DOIUrl":null,"url":null,"abstract":"We present a distributed learning algorithm for optimising transit prices in a negotiation problem in the inter-domain routing framework. We present a combined game theoretic and distributed algorithmic analysis, where the notion of Nash equilibrium with the first approach model meets the notion of stability in the second. We show that minimum cost providers can learn how to strategically set their prices according to a Nash equilibrium; even when assuming incomplete information. We validate our theoretic model by simulations confirming the expected outcome.","PeriodicalId":182496,"journal":{"name":"2008 Next Generation Internet Networks","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Next Generation Internet Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NGI.2008.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a distributed learning algorithm for optimising transit prices in a negotiation problem in the inter-domain routing framework. We present a combined game theoretic and distributed algorithmic analysis, where the notion of Nash equilibrium with the first approach model meets the notion of stability in the second. We show that minimum cost providers can learn how to strategically set their prices according to a Nash equilibrium; even when assuming incomplete information. We validate our theoretic model by simulations confirming the expected outcome.
运输价格谈判:不完全信息下最优策略的分散学习
本文提出了一种分布式学习算法,用于优化域间路由框架下协商问题中的运输价格。我们提出了一种结合博弈论和分布式算法的分析方法,其中第一种方法模型的纳什均衡概念满足第二种方法模型的稳定性概念。我们证明了最低成本提供者可以学习如何根据纳什均衡有策略地设定价格;即使假设信息不完整。通过仿真验证了理论模型的正确性和预期结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信