{"title":"fMRI compatible haptic interface system","authors":"A. Hribar, M. Munih, B. Koritnik","doi":"10.1109/ROBIO.2009.4913023","DOIUrl":null,"url":null,"abstract":"In this paper an upgrade of a Phantom Premium 1.5 haptic device which enables haptic manipulation within a magnetic resonance imaging (MRI) environment is presented. A mechanical extension has been developed that allows Phantom to operate at a safe distance, away from a high-density magnetic field of an fMRI scanner. A study presented in this paper has confirmed electromagnetic compatibility of the extended haptic system with the MRI environment. Tests carried out in a laboratory have also showed that the use of the mechanical extension has no notable effect on haptic perception. The fMRI-compatible haptic platform will allow neuroscientists to studying human brain activation during controlled upper limb movement. This could lead to new discoveries in human motor control. Presented method with the mechanical extension could also be applied to other types of haptic devices.","PeriodicalId":321332,"journal":{"name":"2008 IEEE International Conference on Robotics and Biomimetics","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Robotics and Biomimetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2009.4913023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper an upgrade of a Phantom Premium 1.5 haptic device which enables haptic manipulation within a magnetic resonance imaging (MRI) environment is presented. A mechanical extension has been developed that allows Phantom to operate at a safe distance, away from a high-density magnetic field of an fMRI scanner. A study presented in this paper has confirmed electromagnetic compatibility of the extended haptic system with the MRI environment. Tests carried out in a laboratory have also showed that the use of the mechanical extension has no notable effect on haptic perception. The fMRI-compatible haptic platform will allow neuroscientists to studying human brain activation during controlled upper limb movement. This could lead to new discoveries in human motor control. Presented method with the mechanical extension could also be applied to other types of haptic devices.