F. Pepe, A. Bonfanti, S. Levantino, C. Samori, A. Lacaita
{"title":"A wideband voltage-biased LC oscillator with reduced flicker noise up-conversion","authors":"F. Pepe, A. Bonfanti, S. Levantino, C. Samori, A. Lacaita","doi":"10.1109/RFIC.2013.6569513","DOIUrl":null,"url":null,"abstract":"The demand of voltage-controlled oscillators (VCOs) with a broad tuning range can lead to unacceptable degradation of the 1/f3 phase-noise component if traditional voltage-biased topologies are implemented. In this paper, a novel VCO architecture is proposed, where a segmented transconductor tailors the negative gm depending on the operating range to ensure that flicker-noise up-conversion remains minimal. The implemented oscillator covers both 4G and WiMAX 2.5-GHz operation modes and achieves a 10-dB reduction of the 1/f3 phase noise without impairing the 1/f2 phase-noise performance.","PeriodicalId":203521,"journal":{"name":"2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIC.2013.6569513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The demand of voltage-controlled oscillators (VCOs) with a broad tuning range can lead to unacceptable degradation of the 1/f3 phase-noise component if traditional voltage-biased topologies are implemented. In this paper, a novel VCO architecture is proposed, where a segmented transconductor tailors the negative gm depending on the operating range to ensure that flicker-noise up-conversion remains minimal. The implemented oscillator covers both 4G and WiMAX 2.5-GHz operation modes and achieves a 10-dB reduction of the 1/f3 phase noise without impairing the 1/f2 phase-noise performance.