Proprioceptive sensing for autonomous self-righting on unknown sloped planar surfaces

J. Collins, Chad C. Kessens, Stephen Biggs
{"title":"Proprioceptive sensing for autonomous self-righting on unknown sloped planar surfaces","authors":"J. Collins, Chad C. Kessens, Stephen Biggs","doi":"10.1109/ROSE.2013.6698436","DOIUrl":null,"url":null,"abstract":"Robots that operate in dynamic, unknown environments occasionally require error recovery methods to return to a preferred orientation for mobility (i.e. self-righting), thus preventing mission failure and enabling asset recovery. In this paper, we reduce to practice our previously developed framework for determining self-righting solutions for generic robots on sloped planar surfaces. We begin by briefly reviewing our framework. We then describe the development of a modular robot for examining the effectiveness of our framework. This robot utilizes only joint encoders and an inertial measurement unit (IMU) for sensing. Next, we test the fidelity of our sensors by comparing commanded values, sensor data, and ground truth as given by a Vicon motion capture sensor environment, yielding a baseline margin of error. We utilize this data to explore the robot's ability to determine unknown ground angles using only proprioceptive sensors in combination with a conformation space map, which is pre-computed using our framework. We then investigate the robot's ability to develop its own conformation space map experimentally, and compare it to the pre-computed map. Finally, we demonstrate the robot's ability to self-right on various ground angles using 1, 2, and 3 degrees of freedom.","PeriodicalId":187001,"journal":{"name":"2013 IEEE International Symposium on Robotic and Sensors Environments (ROSE)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Symposium on Robotic and Sensors Environments (ROSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROSE.2013.6698436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Robots that operate in dynamic, unknown environments occasionally require error recovery methods to return to a preferred orientation for mobility (i.e. self-righting), thus preventing mission failure and enabling asset recovery. In this paper, we reduce to practice our previously developed framework for determining self-righting solutions for generic robots on sloped planar surfaces. We begin by briefly reviewing our framework. We then describe the development of a modular robot for examining the effectiveness of our framework. This robot utilizes only joint encoders and an inertial measurement unit (IMU) for sensing. Next, we test the fidelity of our sensors by comparing commanded values, sensor data, and ground truth as given by a Vicon motion capture sensor environment, yielding a baseline margin of error. We utilize this data to explore the robot's ability to determine unknown ground angles using only proprioceptive sensors in combination with a conformation space map, which is pre-computed using our framework. We then investigate the robot's ability to develop its own conformation space map experimentally, and compare it to the pre-computed map. Finally, we demonstrate the robot's ability to self-right on various ground angles using 1, 2, and 3 degrees of freedom.
未知倾斜平面上自主自矫直的本体感觉传感
在动态、未知环境中运行的机器人偶尔需要错误恢复方法来返回到移动的首选方向(即自校正),从而防止任务失败并实现资产恢复。在本文中,我们减少实践我们以前开发的框架,用于确定一般机器人在倾斜平面上的自校正解决方案。我们首先简要回顾一下我们的框架。然后,我们描述了一个模块化机器人的开发,以检查我们的框架的有效性。该机器人仅利用关节编码器和惯性测量单元(IMU)进行传感。接下来,我们通过比较命令值,传感器数据和由Vicon运动捕捉传感器环境给出的地面真相来测试传感器的保真度,从而产生基线误差范围。我们利用这些数据来探索机器人确定未知地角度的能力,仅使用本体感觉传感器结合构象空间图,这是使用我们的框架预先计算的。然后,我们通过实验研究了机器人开发自己的构象空间地图的能力,并将其与预先计算的地图进行了比较。最后,我们展示了机器人在使用1、2和3个自由度的各种地面角度上自我纠正的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信